【題目】已知,
,…,
是由
(
)個整數
,
,…,
按任意次序排列而成的數列,數列
滿足
(
),
,
,…,
是
,
,…,
按從大到小的順序排列而成的數列,記
.
(1)證明:當為正偶數時,不存在滿足
(
)的數列
.
(2)寫出(
),并用含
的式子表示
.
(3)利用,證明:
及
.(參考:
.)
科目:高中數學 來源: 題型:
【題目】已知函數(
為常數,
且
),且數列
是首項為
,公差為
的等差數列.
(1)求證:數列是等比數列;
(2)若,當
時,求數列
的前
項和
的最小值;
(3)若,問是否存在實數
,使得
是遞增數列?若存在,求出
的范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】長軸長為的橢圓的中心在原點,其焦點
,
在
軸上,拋物線的頂點在原點
,對稱軸為
軸,兩曲線在第一象限內相交于點
, 且
,
的面積為3.
(1)求橢圓和拋物線的標準方程;
(2)過點作直線
分別與拋物線和橢圓交于
,
,若
,求直線
的斜率
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示:湖面上甲、乙、丙三艘船沿著同一條直線航行,某一時刻,甲船在最前面的點處,乙船在中間
點處,丙船在最后面的
點處,且
.一架無人機在空中的
點處對它們進行數據測量,在同一時刻測得
,
.(船只與無人機的大小及其它因素忽略不計)
(1)求此時無人機到甲、丙兩船的距離之比;
(2)若此時甲、乙兩船相距100米,求無人機到丙船的距離.(精確到1米)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】記點到圖形
上每一個點的距離的最小值稱為點
到圖形
的距離,那么平面內到定圓
的距離與到定點
的距離相等的點的軌跡不可能是 ( )
A.圓B.橢圓C.雙曲線的一支D.直線
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有六名百米運動員參加比賽,甲、乙、丙、丁四名同學猜測誰跑了第一名.甲猜不是
就是
;乙猜不是
;丙猜不是
中任一個;丁猜是
中之一,若四名同學中只有一名同學猜對,則猜對的是( )
A.甲B.乙C.丙D.丁
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設為函數
(
,
為定義域)圖像上的一個動點,
為坐標原點,
為點
與點
兩點間的距離.
(1)若,求
的最大值與最小值;
(2)若,是否存在實數
,使得
的最小值不小于2?若存在,請求出
的取值范圍;若不存在,則說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若數列滿足
則稱
為
數列.記
(1)若為
數列,且
試寫出
的所有可能值;
(2)若為
數列,且
求
的最大值;
(3)對任意給定的正整數是否存在
數列
使得
?若存在,寫出滿足條件的一個
數列
;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com