【題目】已知函數是定義在
上的奇函數,且當
時,
;
(1)求函數在
上的解析式并畫出函數
的圖象(不要求列表描點,只要求畫出草圖)
(2)(。⿲懗龊瘮的單調遞增區間;
(ⅱ)若方程在
上有兩個不同的實數根,求實數
的取值范圍。
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是正比例函數,函數g(x)是反比例函數,且f(1)=1,g(1)=2.
(1)求函數f(x)和g(x);
(2)判斷函數f(x)+g(x)的奇偶性;
(3)求函數f(x)+g(x)在(0,]上的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有 個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,
約定:每個人通過擲一枚質地均勻的骰子決定自己去參加哪個游戲,擲出點數為 或
的人去參加
甲游戲,擲出點數大于 的人去參加乙游戲.
(1)求這 個人中恰有
個人去參加甲游戲的概率;
(2)求這 個人中去參加甲游戲的人數大于去參加乙游戲的人數的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,求函數
在
上的最大值;
(2)令,若
在區間
上為單調遞增函數,求
的取值范圍;
(3)當時,函數
的圖象與
軸交于兩點
且
,又
是
的導函數.若正常數
滿足條件
.證明:
<0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2-2ax+2+b(a≠0)在區間[2,3]上有最大值5,最小值2.
(1)求a,b的值;
(2)若b<1,g(x)=f(x)-2mx在[2,4]上單調,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于的方程
,給出下列四個判斷:
①存在實數,使得方程恰有4個不同的實根;
②存在實數,使得方程恰有5個不同的實根;
③存在實數,使得方程恰有6個不同的實根;
④存在實數,使得方程恰有8個不同的實根;
其中正確的為________(寫出所有判斷正確的序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,證明函數
在
是單調函數;
(2)當時,函數
在區間
上的最小值是
,求
的值;
(3)設,
是函數
圖象上任意不同的兩點,記線段
的中點的橫坐標是
,證明直線
的斜率
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正三棱柱ABCA1B1C1中,F,F1分別是AC,A1C1的中點.
求證:(1)平面AB1F1∥平面C1BF;
(2)平面AB1F1⊥平面ACC1A1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=1.1x,g(x)=ln x+1,h(x)=x的圖象如圖所示,試分別指出各曲線對應的函數,并比較三個函數的增長差異(以1,a,b,c,d,e為分界點).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com