【題目】在△ABC中,D為BC邊上的中點,P0是邊AB上的一個定點,P0B= AB,且對于AB上任一點P,恒有
≥
,則下列結論中正確的是(填上所有正確命題的序號).
①當P與A,B不重合時, +
與
共線;
②
=
﹣
;
③存在點P,使| |<|
|;
④
=0;
⑤AC=BC.
科目:高中數學 來源: 題型:
【題目】已知命題 “存在
”,命題
:“曲線
表示焦點在
軸上的橢圓”,命題
“曲線
表示雙曲線”
(1)若“且
”是真命題,求實數
的取值范圍;
(2)若是
的必要不充分條件,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某城市氣象部門的數據中,隨機抽取100天的空氣質量指數的監測數據如表:
空氣質量指數t | (0,50] | (50,100] | (100,150] | (150,200) | (200,300] | (300,+∞) |
質量等級 | 優 | 良 | 輕微污染 | 輕度污染 | 中度污染 | 嚴重污染 |
天數K | 5 | 23 | 22 | 25 | 15 | 10 |
(1)若該城市各醫院每天收治上呼吸道病癥總人數y與當天的空氣質量(
取整數)存在如下關系
且當t>300時,y>500,估計在某一醫院收治此類病癥人數超過200人的概率;
(2)若在(1)中,當t>300時,y與t的關系擬合的曲線為,現已取出了10對樣本數據(ti,yi)(i=1,2,3,…,10),且知
試用可線性化的回歸方法,求擬合曲線的表達式.(附:線性回歸方程
中,
,
.)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
,函數
,若
的圖象上相鄰兩條對稱軸的距離為
,圖象過點
.
(1)求表達式和
的單調增區間;
(2)將函數的圖象向右平移
個單位,再將圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數
的圖象,若函數
在區間
上有且只有一個零點,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的函數,其中a為常數.
(I)若x=1是函數的一個極值點,求a的值
(II)若函數在區間(-1,0)上是增函數,求a的取值范圍
(III)若函數,在x=0處取得最大值,求正數a的取值范圍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】程大位是明代著名數學家,他的《新編直指算法統宗》是中國歷史上一部影響巨大的著作,它問世后不久便風行宇內,成為明清之際研習數學者必讀的教材,而且傳到朝鮮、日本及東南亞地區,對推動漢字文化圈的數學發展起了重要的作用.卷八中第33問是:“今有三角果一垛,底闊每面七個,問該若干?”如圖是解決該問題的程序框圖,執行該程序框圖,求得該垛果子的總數為( )
A. 120 B. 84 C. 56 D. 28
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分分)
已知圓,過點
作直線
交圓
于
、
兩點.
(Ⅰ)當經過圓心
時,求直線
的方程.
(Ⅱ)當直線的傾斜角為
時,求弦
的長.
(Ⅲ)求直線被圓
截得的弦長
時,求以線段
為直徑的圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在上的函數
,如果滿足:對任意
,存在常數
,都有
成立,則稱
是
上的有界函數,其中
稱為函數
的上界,已知函數
.
(Ⅰ)若是奇函數,求
的值.
(Ⅱ)當時,求函數
在
上的值域,判斷函數
在
上是否為有界函數,并說明理由.
(Ⅲ)若函數在
上是以
為上界的函數,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com