已知橢圓C的中心在坐標原點,短軸長為4,且有一個焦點與拋物線的焦點重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知經過定點M(2,0)且斜率不為0的直線交橢圓C于A、B兩點,試問在x軸上是否另存在一個定點P使得
始終平分
?若存在,求出
點坐標;若不存在,請說明理由.
(Ⅰ) ;(Ⅱ)
.
解析試題分析:(Ⅰ)設橢圓的標準方程為:,先由已知條件“短軸長為
”,求得
,再由已知條件“有一個焦點與拋物線
的焦點重合”,求得
,則
,從而得到橢圓方程;(Ⅱ)設直線方程為:
,與橢圓方程聯立方程組求得
(※),假設存在定點
使得
始終平分
,則有
,將對應點的坐標代入,結合直線方程以及(※)化簡求得
,從而無論
如何取值,只要
就可保證式子成立,進而得出
點坐標.
試題解析:(Ⅰ)∵橢圓的短軸長為,
∴,解得
,
又拋物線的焦點為
,
∴,則
,
∴所求橢圓方程為:.
(Ⅱ)設:
,代入橢圓方程整理得:
則,假設存在定點
使得
始終平分
,
則①,
要使得①對于恒成立,則
,
故存在定點使得
始終平分
,它的坐標為
.
考點:1.橢圓的標準方程;2.拋物線的性質;3.根與系數的關系
科目:高中數學 來源: 題型:解答題
如圖,在平面直角坐標系中,已知拋物線
,設點
,
,
為拋物線
上的動點(異于頂點),連結
并延長交拋物線
于點
,連結
、
并分別延長交拋物線
于點
、
,連結
,設
、
的斜率存在且分別為
、
.
(1)若,
,
,求
;
(2)是否存在與無關的常數
,是的
恒成立,若存在,請將
用
、
表示出來;若不存在請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:
.
(1)橢圓的短軸端點分別為
(如圖),直線
分別與橢圓
交于
兩點,其中點
滿足
,且
.
①證明直線與
軸交點的位置與
無關;
②若∆面積是∆
面積的5倍,求
的值;
(2)若圓:
.
是過點
的兩條互相垂直的直線,其中
交圓
于
、
兩點,
交橢圓
于另一點
.求
面積取最大值時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線方程2x2-y2=2.
(1)求以A(2,1)為中點的雙曲線的弦所在的直線方程;
(2)過點(1,1)能否作直線l,使l與雙曲線交于Q1,Q2兩點,且Q1,Q2兩點的中點為(1,1)?如果存在,求出它的方程;如果不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓的長軸為AB,過點B的直線
與
軸垂直,橢圓的離心率,F為橢圓的左焦點,且
(1)求此橢圓的標準方程;
(2)設P是此橢圓上異于A,B的任意一點, 軸,H為垂足,延長HP到點Q,使得HP=PQ,連接AQ并延長交直線
于點
,
為
的中點,判定直線
與以
為直徑的圓O位置關系。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的頂點在坐標原點,焦點為,點
是點
關于
軸的對稱點,過點
的直線交拋物線于
兩點。
(Ⅰ)試問在軸上是否存在不同于點
的一點
,使得
與
軸所在的直線所成的銳角相等,若存在,求出定點
的坐標,若不存在說明理由。
(Ⅱ)若的面積為
,求向量
的夾角;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
)如圖,橢圓:
,
、
、
、
為橢圓
的頂點
(Ⅰ)若橢圓上的點
到焦點距離的最大值為
,最小值為
,求橢圓方程;
(Ⅱ)已知:直線相交于
,
兩點(
不是橢圓的左右頂點),并滿足
試研究:直線
是否過定點? 若過定點,請求出定點坐標,若不過定點,請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓,若橢圓
的右頂點為圓
的圓心,離心率為
.
(1)求橢圓的方程;
(2)若存在直線,使得直線
與橢圓
分別交于
兩點,與圓
分別交于
兩點,點
在線段
上,且
,求圓
的半徑
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com