【題目】已知函數對一切實數
都有
成立,且
.
(1)求的值;
(2)求的解析式,并用定義法證明
在
單調遞增;
(3)已知,設P:
,不等式
恒成立,Q:
時,
是單調函數。如果滿足P成立的
的集合記為A,滿足Q成立的
集合記為B,求
(R為全集)。
科目:高中數學 來源: 題型:
【題目】如圖所示,等腰梯形ABCD的底角A等于60°.直角梯形ADEF所在的平面垂直于平面 ABCD,∠EDA=90°,且ED=AD=2AF=2AB=2.
(Ⅰ)證明:平面ABE⊥平面EBD;
(Ⅱ)點M在線段EF上,試確定點M的位置,使平面MAB與平面ECD所成的角的余弦值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AA1=AC=2BC,∠ACB=90°.
(Ⅰ)求證:AC1⊥A1B;
(Ⅱ)求直線AB與平面A1BC所成角的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖長方體中,
,
分別為棱
,
的中點
(1)求證:平面平面
;
(2)請在答題卡圖形中畫出直線與平面
的交點
(保留必要的輔助線),寫出畫法并計算
的值(不必寫出計算過程).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年高考成績揭曉,某高中再創輝煌,考后學校對于單科成績逐個進行分析:現對甲、乙兩個文科班的數學成績進行分析,規定:大于等于135分為優秀,135分以下為非優秀,成績統計后,得到如下的列聯表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優秀的概率為
.
(1)請完成上面的列聯表;
(2)請問:是否有75%的把握認為“數學成績與所在的班級有關系”?
(3)用分層抽樣的方法從甲、乙兩個文科班的數學成績優秀的學生中抽取5名學生進行調研,然后再從這5名學生中隨機抽取2名學生進行談話,求抽到的2名學生中至少有1名乙班學生的概率.
參考公式:(其中
)
參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分分)
已知圓,過點
作直線
交圓
于
、
兩點.
(Ⅰ)當經過圓心
時,求直線
的方程.
(Ⅱ)當直線的傾斜角為
時,求弦
的長.
(Ⅲ)求直線被圓
截得的弦長
時,求以線段
為直徑的圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,直線l的極坐標方程為ρcos(θ+ )=1.以極點O為原點,極軸為x軸的正半軸建立平面直角坐標系,圓C的參數方程為
(θ為參數).若直線l與圓C相切,求r的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com