【題目】針對“中學生追星問題”,某校團委對“學生性別和中學生追星是否有關”作了一次調查,其中女生人數是男生人數的,男生追星的人數占男生人數的
,女生追星的人數占女生人數的
.若有
的把握認為是否追星和性別有關,則男生至少有( )
參考數據及公式如下:
A. 12B. 11C. 10D. 18
科目:高中數學 來源: 題型:
【題目】我國古代數學家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.該原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖,在空間直角坐標系中的平面內,若函數
的圖象與
軸圍成一個封閉的區域
,將區域
沿
軸的正方向平移8個單位長度,得到幾何體如圖一,現有一個與之等高的圓柱如圖二,其底面積與區域
的面積相等,則此圓柱的體積為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形ABCD中,,
,F分別在線段BC和AD上,
,將矩形ABEF沿EF折起
記折起后的矩形為MNEF,且平面
平面ECDF.
Ⅰ
求證:
平面MFD;
Ⅱ
若
,求證:
;
Ⅲ
求四面體NFEC體積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓,
分別為其左、右焦點,過
的直線與此橢圓相交于
兩點,且
的周長為8,橢圓
的離心率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)在平面直角坐標系中,已知點
與點
,過
的動直線
(不與
軸平行)與橢圓相交于
兩點,點
是點
關于
軸的對稱點.求證:
(i)三點共線.
(ii).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓經過定點
,且與直線
相切,設動圓圓心
的軌跡為曲線
.
(1)求曲線的方程;
(2)設過點的直線
,
分別與曲線
交于
,
兩點,直線
,
的斜率存在,且傾斜角互補,證明:直線
的斜率為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知斜率為1的直線與橢圓
交于
,
兩點,且線段
的中點為
,橢圓
的上頂點為
.
(1)求橢圓的離心率;
(2)設直線與橢圓
交于
兩點,若直線
與
的斜率之和為2,證明:
過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,三棱錐放置在以
為直徑的半圓面
上,
為圓心,
為圓弧
上的一點,
為線段
上的一點,且
,
,
.
(Ⅰ)求證:平面平面
;
(Ⅱ)當二面角的平面角為
時,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市為鼓勵人們綠色出行,乘坐地鐵,地鐵公司決定按照乘客經過地鐵站的數量實施分段優惠政策,不超過站的地鐵票價如下表:現有甲、乙兩位乘客同時從起點乘坐同一輛地鐵,已知他們乘坐地鐵都不超過
站,且他們各自在每個站下車的可能性是相同的.
(1)若甲、乙兩人共付費元,則甲、乙下車方案共有多少種?
(2)若甲、乙兩人共付費元,求甲比乙先到達目的地的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com