【題目】正四棱錐P﹣ABCD,B1為PB的中點,D1為PD的中點,則兩個棱錐A﹣B1CD1 , P﹣ABCD的體積之比是( )
A.1:4
B.3:8
C.1:2
D.2:3
【答案】A
【解析】解答:如圖,棱錐A﹣B1CD1 , 的體積可以看成是
正四棱錐P﹣ABCD的體積減去角上的四個小棱錐的體積得到,
因為B1為PB的中點,D1為PD的中點,
∴棱錐B1﹣ABC,的體積和棱錐D1﹣ACD,的體積都是正四棱錐P﹣ABCD的體積的 ,
棱錐C﹣PB1D1 , 的體積與棱錐A﹣PB1D1的體積之和是正四棱錐P﹣ABCD的體積的 ,
則中間剩下的棱錐A﹣B1CD1的體積
=正四棱錐P﹣ABCD的體積﹣3× 個正四棱錐P﹣ABCD的體積
= 個正四棱錐P﹣ABCD的體積
則兩個棱錐A﹣B1CD1 , P﹣ABCD的體積之比是1:4.
故選A.
分析:如圖,棱錐A﹣B1CD1 , 的體積可以看成正四棱錐P﹣ABCD的體積減去角上的四個小棱錐的體積得到,利用底面與高之間的關系得出棱錐B1﹣ABC,的體積和棱錐D1﹣ACD,的體積都是正四棱錐P﹣ABCD的體積的 ,棱錐C﹣PB1D1 , 的體積與棱錐A﹣PB1D1的體積之和是正四棱錐P﹣ABCD的體積的
,則中間剩下的棱錐A﹣B1CD1的體積=正四棱錐P﹣ABCD的體積﹣3×
個正四棱錐P﹣ABCD的體積,最終得到則兩個棱錐A﹣B1CD1 , P﹣ABCD的體積之比.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2sinxcosx+2 cos2x﹣
.
(1)求函數f(x)的單調減區間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,已知a=1,b= ,f(A﹣
)=
,求角C.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在數列{an}中,a1=1,Sn+1=4an+2,則a2013的值為( )
A.3019×22012
B.3019×22013
C.3018×22012
D.無法確定
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a>3且a≠ ,命題p:指數函數f(x)=(2a﹣6)x在R上單調遞減,命題q:關于x的方程x2﹣3ax+2a2+1=0的兩個實根均大于3.若p或q為真,p且q為假,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的首項a1為常數,且an+1=3n﹣2an , (n∈N*)
(1)證明:{an﹣ }是等比數列;
(2)若a1= ,{an}中是否存在連續三項成等差數列?若存在,寫出這三項,若不存在說明理由.
(3)若{an}是遞增數列,求a1的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知三棱錐的底面是直角三角形,直角邊長分別為3和4,過直角頂點的側棱長為4,且垂直于底面,該三棱錐的正視圖是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線與拋物線
:
相交于
,
兩點,
是線段
的中點,過
作
軸的垂線交
于點
.
(Ⅰ)證明:拋物線在點
處的切線與
平行;
(Ⅱ)是否存在實數使
?若存在,求
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數(
為自然對數的底數),
,
.
(1)若是
的極值點,且直線
分別與函數
和
的圖象交于
,求
兩點間的最短距離;
(2)若時,函數
的圖象恒在
的圖象上方,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com