【題目】如圖,在四棱錐中,
底面
,
,
,
,
為
的中點,
是
上的點.
(1)若平面
,證明:
平面
.
(2)求二面角的余弦值.
【答案】(1)證明見解析(2)
【解析】
(1)因為,利用線面平行的判定定理可證出
平面
,利用點線面的位置關系,得出
和
,由于
底面
,利用線面垂直的性質,得出
,且
,最后結合線面垂直的判定定理得出
平面
,即可證出
平面
.
(2)由(1)可知,
,
兩兩垂直,建立空間直角坐標系
,標出點坐標,運用空間向量坐標運算求出所需向量,分別求出平面
和平面
的法向量,最后利用空間二面角公式,即可求出
的余弦值.
(1)證明:因為,
平面
,
平面
,
所以平面
,
因為平面
,
平面
,所以可設平面
平面
,
又因為平面
,所以
.
因為平面
,
平面
,
所以,從而得
.
因為底面
,所以
.
因為,所以
.
因為,所以
平面
.
綜上,平面
.
(2)解:由(1)可得,
,
兩兩垂直,以
為原點,
,
,
所在
直線分別為,
,
軸,建立如圖所示的空間直角坐標系
.
因為,所以
,
則,
,
,
,
所以,
,
,
.
設是平面
的法向量,
由取
取,得
.
設是平面
的法向量,
由得
取,得
,
所以,
即的余弦值為
.
科目:高中數學 來源: 題型:
【題目】下圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.
(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關系,請用相關系數加以說明;
(Ⅱ)建立y關于t的回歸方程(系數精確到0.01),預測2016年我國生活垃圾無害化處理量.
附注:
參考數據:,
,
,
≈2.646.
參考公式:相關系數
回歸方程中斜率和截距的最小二乘估計公式分別為:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】半正多面體(semiregular solid) 亦稱“阿基米德多面體”,是由邊數不全相同的正多邊形為面的多面體,體現了數學的對稱美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個正三角形和六個正方形為面的半正多面體.如圖所示,圖中網格是邊長為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】第七屆世界軍人運動會于2019年10月18日至27日在中國武漢舉行,中國隊以133金64銀42銅位居金牌榜和獎牌榜的首位.運動會期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個運動場地提供服務,要求每個人都要被派出去提供服務,且每個場地都要有志愿者服務,則甲和乙恰好在同一組的概率是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,已知曲線
的參數方程為
(
為參數),以坐標原點為極點,
軸的正半軸為極軸,建立極坐標系,直線
的極坐標方程為
.
(1)求曲線的普通方程和直線
的直角坐標方程;
(2)若射線的極坐標方程為
(
).設
與
相交于點
,
與
相交于點
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左頂點為
,右焦點為
,斜率為1的直線與橢圓
交于
,
兩點,且
,其中
為坐標原點.
(1)求橢圓的標準方程;
(2)設過點且與直線
平行的直線與橢圓
交于
,
兩點,若點
滿足
,且
與橢圓
的另一個交點為
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com