精英家教網 > 高中數學 > 題目詳情

設函數對任意,都有,且> 0時,< 0,

(1)求;   (2)若函數定義在上,求不等式的解集。

解析:(1)令x=y=0,則f(0)= f(0)+ f(0) ∴f(0)=0

    (2) 可先證明在R上是減函數。設  則   此時

在R上是減函數 ,則上也是減函數w.w.w.k.s.5.u.c.o.m    

等價于

所不等式的解集為:
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數對任意,都有,且> 0時,

< 0,. (1)求;  

(2)若函數定義在上,求不等式的解集。

查看答案和解析>>

科目:高中數學 來源:2013-2014學年四川省高三第三次月考理科數學試卷(解析版) 題型:解答題

設函數對任意,都有,當時, 

(1)求證:是奇函數;

(2)試問:在時  ,是否有最大值?如果有,求出最大值,如果沒有,說明理由.

(3)解關于x的不等式

 

查看答案和解析>>

科目:高中數學 來源:2013-2014學年四川省高三第三次月考文科數學試卷(解析版) 題型:解答題

設函數對任意,都有,當時, 

(1)求證:是奇函數;

(2)試問:在時  ,是否有最大值?如果有,求出最大值,如果沒有,說明理由.

(3)解關于x的不等式

 

查看答案和解析>>

科目:高中數學 來源:2012年蘇教版高中數學選修1-2 2.2直接證明與間接證明練習卷(解析版) 題型:解答題

設函數對任意,都有時,

(Ⅰ)證明為奇函數;

(Ⅱ)證明上為減函數.

 

查看答案和解析>>

科目:高中數學 來源:2014屆寧夏中衛市海原一中高一上學期期末考試數學 題型:解答題

(本小題滿分14分)

設函數對任意實數都有

(Ⅰ)證明是奇函數;

(Ⅱ)證明內是增函數;

(Ⅲ)若,試求的取值范圍。

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视