【題目】執行如圖的程序框圖(N∈N*),那么輸出的p是( )
A.
B.
C.
D.
科目:高中數學 來源: 題型:
【題目】設定義在R上的偶函數y=f(x),滿足對任意t∈R都有f(t)=f(2﹣t),且x∈(0,1]時,f(x)= ,a=f(
),b=f(
),c=f(
),則( )
A.b<c<a
B.a<b<c
C.c<a<b
D.b<a<c
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某網絡營銷部門為了統計某市網友2015年11月11日在某網店的網購情況,隨機抽查了該市100名網友的網購金額情況,得到如圖頻率分布直方圖.
(1)估計直方圖中網購金額的中位數;
(2)若規定網購金額超過15千元的顧客定義為“網購達人”,網購金額不超過15千元的顧客定義為“非網購達人”;若以該網店的頻率估計全市“非網購達人”和“網購達人”的概率,從全市任意選取3人,則3人中“非網購達人”與“網購達人”的人數之差的絕對值為X,求X的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】品酒師需定期接受酒味鑒別功能測試,一種通常采用的測試方法如下:拿出n瓶外觀相同但品質不同的酒讓其品嘗,要求其按品質優劣為它們排序;經過一段時間,等其記憶淡忘之后,再讓其品嘗這n瓶酒,并重新按品質優劣為它們排序,這稱為一輪測試.根據一輪測試中的兩次排序的偏離程度的高低為其評分. 現設n=4,分別以a1 , a2 , a3 , a4表示第一次排序時被排為1,2,3,4的四種酒在第二次排序時的序號,并令X=|1﹣a1|+|2﹣a2|+|3﹣a3|+|4﹣a4|,
則X是對兩次排序的偏離程度的一種描述.
(Ⅰ)寫出X的可能值集合;
(Ⅱ)假設a1 , a2 , a3 , a4等可能地為1,2,3,4的各種排列,求X的分布列;
(Ⅲ)某品酒師在相繼進行的三輪測試中,都有X≤2,
①試按(Ⅱ)中的結果,計算出現這種現象的概率(假定各輪測試相互獨立);②你認為該品酒師的酒味鑒別功能如何?說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com