【題目】命題方程
表示橢圓,命題
恒成立;
(1)若命題為真命題,求實數
的取值范圍;
(2)若命題為真,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】改革開放以來,人們的支付方式發生了巨大轉變.近年來,移動支付已成為主要支付方式之一.為了解某校學生上個月A,B兩種移動支付方式的使用情況,從全校所有的1000名學生中隨機抽取了100人,發現樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學生的支付金額分布情況如下:
支付方式 | 不大于2000元 | 大于2000元 |
僅使用A | 27人 | 3人 |
僅使用B | 24人 | 1人 |
(Ⅰ)估計該校學生中上個月A,B兩種支付方式都使用的人數;
(Ⅱ)從樣本僅使用B的學生中隨機抽取1人,求該學生上個月支付金額大于2000元的概率;
(Ⅲ)已知上個月樣本學生的支付方式在本月沒有變化.現從樣本僅使用B的學生中隨機抽查1人,發現他本月的支付金額大于2000元.結合(Ⅱ)的結果,能否認為樣本僅使用B的學生中本月支付金額大于2000元的人數有變化?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,已知橢圓
,拋物線
的焦點
是
的一個頂點,設
是
上的動點,且位于第一象限,記
在點
處的切線為
.
(1)求的值和切線
的方程(用
表示)
(2)設與
交于不同的兩點
,線段
的中點為
,直線
與過
且垂直于
軸的直線交于點
.
(i)求證:點在定直線上;
(ii)設與
軸交于點
,記
的面積為
,
的面積為
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知圓心在
軸上,半徑為2的圓
位于
軸右側,且與直線
相切.
(1)求圓的方程;
(2)在圓上,是否存在點
,使得直線
與圓
相交于不同的兩點
,且
的面積最大?若存在,求出點
的坐標及對應的
的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,,
,
,E為AB的中點
將
沿CE折起,使點B到達點F的位置,且平面CEF與平面ADCE所成的二面角為
.
求證:平面
平面AEF;
求直線DF與平面CEF所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】拋物線的焦點為F,圓
,點
為拋物線上一動點.已知當
的面積為
.
(I)求拋物線方程;
(II)若,過P做圓C的兩條切線分別交y軸于M,N兩點,求
面積的最小值,并求出此時P點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某縣畜牧技術員張三和李四9年來一直對該縣山羊養殖業的規模進行跟蹤調查,張三提供了該縣某山羊養殖場年養殖數量單位:萬只
與相應年份
序號
的數據表和散點圖
如圖所示
,根據散點圖,發現y與x有較強的線性相關關系,李四提供了該縣山羊養殖場的個數
單位:個
關于x的回歸方程
.
年份序號x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
年養殖山羊 |
根據表中的數據和所給統計量,求y關于x的線性回歸方程
參考統計量:
,
;
試估計:
該縣第一年養殖山羊多少萬只
到第幾年,該縣山羊養殖的數量與第一年相比縮小了?
附:對于一組數據,
,
,其回歸直線
的斜率和截距的最小二乘估計分別為
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中,
平面
,
為
邊上一點,
,
.
(1)證明:平面平面
.
(2)若,試問:
是否與平面
平行?若平行,求三棱錐
的體積;若不平行,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某食品廠為了檢查甲乙兩條自動包裝流水線的生產情況,隨機在這兩條流水線上各抽取40件產品作為樣本稱出它們的質量(單位:克),質量值落在(495,510]的產品為合格品,否則為不合格品.表是甲流水線樣本頻數分布表,圖是乙流水線樣本頻率分布直方圖.
表甲流水線樣本頻數分布表
產品質量/克 | 頻數 |
(490,495] | 6 |
(495,500] | 8 |
(500,505] | 14 |
(505,510] | 8 |
(510,515] | 4 |
(1)若以頻率作為概率,試估計從兩條流水線分別任取1件產品,該產品恰好是合格品的概率分別是多少;
(2)由以上統計數據作出2×2列聯表,并回答能否有95%的把握認為“產品的包裝質量與兩條自動包裝流水線的選擇有關”
χ2
甲流水線 | 乙流水線 | 總計 | |
合格品 | |||
不合格品 | |||
總計 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com