精英家教網 > 高中數學 > 題目詳情

【題目】已知函數.其中

(1)當時,求函數的單調區間;

(2)若對于任意,都有恒成立,求的取值范圍.

【答案】(1)見解析;(2).

【解析】試題分析:求出,令其為,則,由此利用導數性質能求出函數的單調區間;

,求導,分類討論,,和三種情況,求出的取值范圍

解析:(1),令其為,則所以可得單調遞增,

,則在區間上,,函數單調遞減;在區間,函數單調遞增.

(2),另,可知,

,令

時,結合對應二次函數的圖像可知,,即,所以函數單調遞減,時,,時,,

可知此時滿足條件.

時,結合對應二次函數的圖像可知,可知,單調遞增,,時,時,,,可知此時不成立.

時,研究函數,可知,對稱軸,

那么在區間大于0,即在區間大于0,在區間單調遞增,,可知此時,所以不滿足條件.

綜上所述:.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】四棱臺被過點的平面截去一部分后得到如圖所示的幾何體,其下底面四邊形是邊長為2的菱形,,平面.

(Ⅰ)求證:平面平面;

(Ⅱ)若與底面所成角的正切值為2,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018湖南(長郡中學、株洲市第二中學)、江西(九江一中)等十四校高三第一次聯考已知函數(其中為常數, 為自然對數的底數, ).

)若函數的極值點只有一個,求實數的取值范圍;

)當時,若(其中)恒成立,求的最小值的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】橢圓)的左、右焦點分別為,,過作垂直于軸的直線與橢圓在第一象限交于點,若,且.

(Ⅰ)求橢圓的方程;

(Ⅱ),是橢圓上位于直線兩側的兩點.若直線過點,且,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某小店每天以每份5元的價格從食品廠購進若干份食品,然后以每份10元的價格出售.如果當天賣不完,剩下的食品還可以每份1元的價格退回食品廠處理.

(Ⅰ)若小店一天購進16份,求當天的利潤(單位:元)關于當天需求量(單位:份,)的函數解析式;

(Ⅱ)小店記錄了100天這種食品的日需求量(單位:份),整理得下表:

日需求量

14

15

16

17

18

19

20

頻數

10

20

16

16

15

13

10

以100天記錄的各需求量的頻率作為各需求量發生的概率.

(i)小店一天購進16份這種食品,表示當天的利潤(單位:元),求的分布列及數學期望;

(ii)以小店當天利潤的期望值為決策依據,你認為一天應購進食品16份還是17份?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x3+ax2+bx+1(a>0,b∈R)有極值,且導函數f'(x)的極值點是f(x)的零點.(極值點是指函數取極值時對應的自變量的值)

(1)b關于a的函數關系式,并寫出定義域;

(2)證明:b2>3a;

(3)f(x),f'(x)這兩個函數的所有極值之和不小于-,a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了適當疏導電價矛盾,保障電力供應,支持可再生能源發展,促進節能減排,安徽省于2012年推出了省內居民階梯電價的計算標準:以一個年度為計費周期、月度滾動使用,第一階梯電量:年用電量2160度以下(含2160度),執行第一檔電價0.5653元/度;第二階梯電量:年用電量2161至4200度(含4200度),執行第二檔電價0.6153元/度;第三階梯電量:年用電量4200度以上,執行第三檔電價0.8653元/度.

某市的電力部門從本市的用電戶中隨機抽取10戶,統計其同一年度的用電情況,列表如下表:

用戶編號

1

2

3

4

5

6

7

8

9

10

年用電量(度)

1000

1260

1400

1824

2180

2423

2815

3325

4411

4600

(Ⅰ)試計算表中編號為10的用電戶本年度應交電費多少元?

(Ⅱ)現要在這10戶家庭中任意選取4戶,對其用電情況作進一步分析,求取到第二階梯電量的戶數的分布列與期望;

(Ⅲ)以表中抽到的10戶作為樣本估計全市的居民用電情況,現從全市居民用電戶中隨機地抽取10戶,若抽到戶用電量為第一階梯的可能性最大,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分12分)

如圖,已知四棱錐的底面為菱形,且 .

I)求證:平面 平面;

II)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】據統計2018年春節期間微信紅包收發總量達到460億個。收發紅包成了生活的調味劑。某網絡運營商對甲、乙兩個品牌各5種型號的手機在相同環境下,對它們搶到的紅包個數進行統計,得到如下數據:

型號

手機品牌

甲品牌(個)

4

3

8

6

12

乙品牌(個)

5

7

9

4

3

Ⅰ)如果搶到紅包個數超過5個的手機型號為,否則非優,請據此判斷是否有85%的把握認為搶到的紅包個數與手機品牌有關?

Ⅱ)如果不考慮其它因素,要從甲品牌的5種型號中選出2種型號的手機進行大規模宣傳銷售.求型號Ⅰ或型號Ⅱ被選中的概率.

下面臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视