在直角坐標系中,為坐標原點,如果一個橢圓經過點P(3,
),且以點F(2,0)為它的一個焦點.
(1)求此橢圓的標準方程;
(2)在(1)中求過點F(2,0)的弦AB的中點M的軌跡方程.
科目:高中數學 來源: 題型:解答題
已知橢圓:
.
(1)橢圓的短軸端點分別為
(如圖),直線
分別與橢圓
交于
兩點,其中點
滿足
,且
.
①證明直線與
軸交點的位置與
無關;
②若∆面積是∆
面積的5倍,求
的值;
(2)若圓:
.
是過點
的兩條互相垂直的直線,其中
交圓
于
、
兩點,
交橢圓
于另一點
.求
面積取最大值時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(1)已知定點、
,動點N滿足
(O為坐標原點),
,
,
,求點P的軌跡方程.
(2)如圖,已知橢圓的上、下頂點分別為
,點
在橢圓上,且異于點
,直線
與直線
分別交于點
,
(。┰O直線的斜率分別為
、
,求證:
為定值;
(ⅱ)當點運動時,以
為直徑的圓是否經過定點?請證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率
,連接橢圓的四個頂點得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設直線與橢圓相交于不同的兩點A,B。已知點A的坐標為
。若
,求直線
的傾斜角。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在平面直角坐標系中,已知橢圓
經過點
,橢圓的離心率
.
(1)求橢圓的方程;
(2)過點作兩直線與橢圓
分別交于相異兩點
、
.若
的平分線與
軸平行, 試探究直線
的斜率是否為定值?若是, 請給予證明;若不是, 請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓直線
與圓
相切,且交橢圓
于
兩點,
是橢圓的半焦距,
,
(Ⅰ)求的值;
(Ⅱ)O為坐標原點,若求橢圓
的方程;
(Ⅲ) 在(Ⅱ)的條件下,設橢圓的左右頂點分別為A,B,動點
,直線AS,BS與直線
分別交于M,N兩點,求線段MN的長度的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,直線
與以原點為圓心、橢圓
的短半軸長為半徑的圓
相切.
(1)求橢圓的方程;
(2)如圖,、
、
是橢圓
的頂點,
是橢圓
上除頂點外的任意點,直線
交
軸于點
,直線
交
于點
,設
的斜率為
,
的斜率為
,求證:
為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com