【題目】三峽大壩專用公路沿途山色秀美,風景怡人.為確保安全,全程限速為80公里/小時.為了解汽車實際通行情況,經過監測發現某時段200輛汽車通過這段公路的車速均在[50,90](公里/小時)內,根據監測結果得到如下組距為10的頻率分布折線圖:
(1)請根據頻率分布折線圖,將頰率分布直方圖補充完整(用陰影部分表示);
(2)求這200輛汽車在該路段超速的車輛數以及在該路段的平均速度.
科目:高中數學 來源: 題型:
【題目】已知項數為的數列
滿足如下條件:①
;②
若數列
滿足
其中
則稱
為
的“伴隨數列”.
(I)數列是否存在“伴隨數列”,若存在,寫出其“伴隨數列”;若不存在,請說明理由;
(II)若為
的“伴隨數列”,證明:
;
(III)已知數列存在“伴隨數列”
且
求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】首屆中國國際進口博覽會于2018年11月5日至10日在上海舉辦,本屆展會共有來自172個國家、地區和國際組織參會,3600多家企業參展,超過40萬名采購商到會洽談采購,其中中國館更是吸引眾人眼球.為了使博覽會有序進行,組委會安排6名志愿者到中國館的某4個展區提供服務,要求展區各安排一名志愿者,其余兩個展區各安排兩名志愿者,其中小馬和小王不在一起,則不同的安排方案共有( )
A.156種B.168種C.172種D.180種
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,已知圓
的參數方程為
(
為參數,
).以原點
為極點,
軸的正半軸為極軸,取相同的長度單位建立極坐標系,直線
的極坐標方程是
.
(1)若直線與圓
有公共點,試求實數
的取值范圍;
(2)當時,過點
且與直線
平行的直線
交圓
于
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從2020年起,北京考生的高考成績由語文、數學、外語3門統一高考成績和考生選考的3門普通高中學業水平考試等級性考試科目成績構成.等級性考試成績位次由高到低分為,
,
,
,
,各等級人數所占比例依次為:
等級15%,
等級40%,
等級30%,
等級14%,
等級1%.現采用分層抽樣的方法,從參加歷史等級性考試的學生中抽取1000人作為樣本,則該樣本中獲得
或
等級的學生人數為( )
A.275B.400C.550D.450
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱臺中,
,.若點
為
的中點,點
為
靠近點
的四等分點.
(1)求證:平面
;
(2)若三棱臺的體積為
,求三棱錐
的體積.
注:臺體體積公式:,或在
分別為臺體上下底面積,
為臺體的高.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數(其中
)的圖象如圖所示,為了得到
的圖象,則只要將
的圖象上所有的點( )
A.向左平移個單位長度,縱坐標縮短到原來的
,橫坐標不變
B.向左平移個單位長度,縱坐標伸長到原來的3倍橫坐標不變
C.向右平移個單位長度,縱坐標縮短到原來的
,橫坐標不變
D.向右平移個單位長度,縱坐標伸長到原來的3倍,橫坐標不變
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】PM2.5是衡量空氣質量的重要指標,我國采用世衛組織的最寬值限定值,即PM2.5日均值在以下空氣質量為一級,在
空氣質量為二級,超過
為超標,如圖是某地1月1日至10日的PM2.5(單位:
)的日均值,則下列說法正確的是( )
A.10天中PM2.5日均值最低的是1月3日
B.從1日到6日PM2.5日均值逐漸升高
C.這10天中恰有5天空氣質量不超標
D.這10天中PM2.5日均值的中位數是43
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知棱長為1的正方體,過對角線
作平面
交棱
于點
,交棱
于點
,以下結論正確的是( )
A.四邊形不一定是平行四邊形
B.平面分正方體所得兩部分的體積相等
C.平面與平面
不可能垂直
D.四邊形面積的最大值為
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com