精英家教網 > 高中數學 > 題目詳情

若函數的定義域為,且滿足為 奇函數,為偶函數,則下列說法中一定正確的有        
(1)的圖像關于直線對稱
(2)的周期為 
(3)  
(4)上只有一個零點

解析試題分析:因為,函數的定義域為,且滿足為 奇函數,為偶函數,所以f(-x+1)=-f(x+1) .......(1);f(x-1)=f(-x-1).......(2)。
由(1) 得f(x+1)=-f(-x+1) ,故;
由(2) 得f(x-1)=f(-x-1),故的圖像關于直線對稱;(1)正確。由此可知,函數要嗎沒零點,要嗎不只一個零點;(4)不正確。
由①令-x+1=t得:f(t)=-f(2-t)…………③;②令-x-1=t得:f(t)= f(-2-t)………④;
由③、④得f(2-t)=- f(-2-t)由此令-2-t=m得f(4+m) =-f(m),
所以,f(8+m) =-f(m+4)= f(m),函數f(x)的周期為8,(2)不正確。
所以,(3)正確。
綜上知,答案為(1)(3)
考點:本題主要考查函數的奇偶性、周期性、對稱性。
點評:中檔題,本題比較典型,綜合考查了函數的奇偶性、周期性、對稱性,有一定難度,需要靈活運用“代換的方法”,尋求所需條件、結論。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

已知,且,則實數等于______________.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

已知函數為減函數,則a的取值范圍是          

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

函數f(x)=lg(x2-3x)的單調遞增區間是        

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

設奇函數的定義域為,若當時, 的圖象如右圖,則不等式的解是         

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

已知函數為奇函數,則=           

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

已知當時,的值為3,則當時,的值為      

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

函數的單調增區間為           

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

函數的單調遞減區間           

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视