題目列表(包括答案和解析)
(本小題滿分14分)已知函數=
+
有如下性質:如果常數
>0,那么該
函數在0,
上是減函數,在
,+∞
上是增函數.
(1)如果函數=
+
(
>0)的值域為
6,+∞
,求
的值;
(2)研究函數=
+
(常數
>0)在定義域內的單調性,并說明理由;
(3)對函數=
+
和
=
+
(常數
>0)作出推廣,使它們都是你所推廣的
函數的特例.
(4)(理科生做)研究推廣后的函數的單調性(只須寫出結論,不必證明),并求函數=
+
(
是正整數)在區間[
,2]上的最大值和最小值(可利用你
的研究結論).
(本小題滿分14分)已知函數=
(1) 若存在單調增區間,求
的取值范圍;
(2)是否存在實數>0,使得方程
在區間
內有且只有兩個不相等的實數根?若存在,求出
的取值范圍?若不存在,請說明理由.
(本小題滿分14分)
設函數
(1)當時,曲線
在點
處的切線斜率
(2)求函數的單調區間與極值;
(3)已知函數有三個互不相同的零點0,
若對任意的
恒成立,求
的取值范圍。
(本小題滿分14分)
已知函數
(I)當a=1時,求函數的單調區間;
(II)求函數在區間[0,1]上的最小值。
(本小題滿分14分)
已知函數F(x)=|2x-t|-x3+x+1(x∈R,t為常數,t∈R).
(Ⅰ)寫出此函數F(x)在R上的單調區間;
(Ⅱ)若方程F(x)-k=0恰有兩解,求實數k的值.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com