6已知數列{an}對于任意m.n∈N*.有am+an=am+n.若則a40等于 A.8 B.9 C.10 D.11 查看更多

 

題目列表(包括答案和解析)

已知數列{an}對任意的p,q∈N*滿足ap+q=ap+aq,且a2=-6,那么a10等于

(A)-165            (B)-33                          (C)-30                   (D)-21

查看答案和解析>>

已知數列{an}對任意的p,q∈Nm滿足ap+q=ap+aq,且aP=-6,那么ap+q等于 

A.-165                       B.-33                         C.-30                         D.-21

查看答案和解析>>

已知數列{log2(an-2)}(n∈N*)為等差數列,且a1=5,a3=29.
(1)求數列{an}的通項公式;
(2)對任意n∈N*,
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
<m
恒成立的實數m是否存在最小值?如果存在,求出m的最小值;如果不存在,說明理由.

查看答案和解析>>

 6已知數列{an}、{bn}滿足bn=,求證:數列{an}成等差數列的充要條件是數列{bn}也是等差數列。

查看答案和解析>>

 6已知數列{an}、{bn}滿足bn=,求證:數列{an}成等差數列的充要條件是數列{bn}也是等差數列。

查看答案和解析>>

一、選擇題:

2,4,6

二、填空題:

13、  14、 15、75  16、  17、②  18、④   19、

20、21、22、23、24、25、

26、

三、解答題:

27解:(1)當時,,

,∴上是減函數.

(2)∵不等式恒成立,即不等式恒成立,

不等式恒成立. 當時,  不恒成立;

時,不等式恒成立,即,∴.

時,不等式不恒成立. 綜上,的取值范圍是.

28解:(1)

(2)20 

20與=3解得b=4,c=5或b=5,c= 4

(3)設D到三邊的距離分別為x、y、z,則 

 又x、y滿足

畫出不等式表示的平面區域得: 

29(1)證明:連結,則//,  

是正方形,∴.∵,∴

,∴.  

,∴,

(2)證明:作的中點F,連結

的中點,∴,

∴四邊形是平行四邊形,∴

的中點,∴,

,∴

∴四邊形是平行四邊形,//,

,

∴平面

平面,∴

(3)

. 

30解: (1)由,

,

則由,解得F(3,0) 設橢圓的方程為,

,解得 所以橢圓的方程為  

(2)因為點在橢圓上運動,所以,   從而圓心到直線的距離. 所以直線與圓恒相交

又直線被圓截得的弦長為

由于,所以,則,

即直線被圓截得的弦長的取值范圍是

31解:(1)g(t) 的值域為[0,]

(2)

(3)當時,+=<2;

時,.

所以若按給定的函數模型預測,該市目前的大氣環境綜合指數不會超標。

32解:(1)

 當時,時,,

 

 的極小值是

(2)要使直線對任意的都不是曲線的切線,當且僅當時成立,

(3)因最大值

 ①當時,

 

  ②當時,(?)當

 

(?)當時,單調遞增;

1°當時,

;

2°當

(?)當

(?)當

綜上 

 

 

久久精品免费一区二区视