②?①整理得:.故為等比數列 -------3分 查看更多

 

題目列表(包括答案和解析)

設橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標原點.

(Ⅰ)若直線的斜率之積為,求橢圓的離心率;

(Ⅱ)若,證明直線的斜率 滿足

【解析】(1)解:設點P的坐標為.由題意,有  ①

,得,

,可得,代入①并整理得

由于,故.于是,所以橢圓的離心率

(2)證明:(方法一)

依題意,直線OP的方程為,設點P的坐標為.

由條件得消去并整理得  ②

,,

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依題意,直線OP的方程為,設點P的坐標為.

由P在橢圓上,有

因為,所以,即   ③

,,得整理得.

于是,代入③,

整理得

解得

所以.

 

查看答案和解析>>

某花店每天以每枝5元的價格從農場購進若干枝玫瑰花,然后以每枝10元的價格出售。如果當天賣不完,剩下的玫瑰花做垃圾處理。

(Ⅰ)若花店一天購進17枝玫瑰花,求當天的利潤y(單位:元)關于當天需求量n(單位:枝,n∈N)的函數解析式。

(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

頻數

10

20

16

16

15

13

10

(i)假設花店在這100天內每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數;

(ii)若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發生的概率,求當天的利潤不少于75元的概率.

【命題意圖】本題主要考查給出樣本頻數分別表求樣本的均值、將頻率做概率求互斥事件的和概率,是簡單題.

【解析】(Ⅰ)當日需求量時,利潤=85;

當日需求量時,利潤,

關于的解析式為

(Ⅱ)(i)這100天中有10天的日利潤為55元,20天的日利潤為65元,16天的日利潤為75元,54天的日利潤為85元,所以這100天的平均利潤為

=76.4;

(ii)利潤不低于75元當且僅當日需求不少于16枝,故當天的利潤不少于75元的概率為

 

查看答案和解析>>

(2012•威海二模)某商場調查旅游鞋的銷售情況,隨機抽取了部分顧客的購鞋尺寸,整理得如下頻率分布直方圖,其中直方圖從左至右的前3個小矩形的面積之比為1:2:3,則購鞋尺寸在[39.5,43.5)內的顧客所占百分比為
55%
55%

查看答案和解析>>

為了解高中一年級學生身高情況,某校按10%的比例對全校700名高中一年級學生按性別進行抽樣檢查,測得身高頻數分布表如下表1、表2.

表1:男生身高頻數分布表

 

身高(cm)

[160,165)

[165,170)

[170,175)

[175,180)

[180,185)

[185,190)

頻數

2

5

14

13

4

2

 

表2:女生身高頻數分布表

 

身高(cm)

[150,155)

[155,160)

[160,165)

[165,170)

[170,175)

[175,180)

頻數

1

7

12

6

3

1

 

(I)求該校男生的人數并完成下面頻率分布直方圖;

(II)估計該校學生身高在的概率;

(III)從樣本中身高在180190cm之間的男生中任選2人,求至少有1人身高在185190cm之間的概率。

【解析】第一問樣本中男生人數為40 ,

由分層抽樣比例為10%可得全校男生人數為400

(2)中由表1、表2知,樣本中身高在的學生人數為:5+14+13+6+3+1=42,樣本容量為70 ,所以樣本中學生身高在的頻率 

故由估計該校學生身高在的概率 

(3)中樣本中身高在180185cm之間的男生有4人,設其編號為①②③④ 樣本中身高在185190cm之間的男生有2人,設其編號為⑤⑥從上述6人中任取2人的樹狀圖,故從樣本中身高在180190cm之間的男生中任選2人得所有可能結果數為15,求至少有1人身高在185190cm之間的可能結果數為9,因此,所求概率

由表1、表2知,樣本中身高在的學生人數為:5+14+13+6+3+1=42,樣本容量為70 ,所以樣本中學生身高在

的頻率-----------------------------------------6分

故由估計該校學生身高在的概率.--------------------8分

(3)樣本中身高在180185cm之間的男生有4人,設其編號為①②③④ 樣本中身高在185190cm之間的男生有2人,設其編號為⑤⑥從上述6人中任取2人的樹狀圖為:

--10分

故從樣本中身高在180190cm之間的男生中任選2人得所有可能結果數為15,求至少有1人身高在185190cm之間的可能結果數為9,因此,所求概率

 

查看答案和解析>>

【解析】本小題考查直線方程的求法。畫草圖,由對稱性可猜想。

事實上,由截距式可得直線,直線,兩式相減得,顯然直線AB與CP的交點F滿足此方程,又原點O也滿足此方程,故為所求的直線OF的方程。

答案。

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视