數 學 附 加 卷 答 卷 紙 2009.5 查看更多

 

題目列表(包括答案和解析)

(2012•長春模擬)某學校為了研究學情,從高三年級中抽取了20名學生三次測試的數學成績和物理成績,計算出了他們三次成績的平均名次如下表:
學生序號 1 2 3 4 5 6 7 8 9 10
數    學 1.3 12.3 25.7 36.7 50.3 67.7 49.0 52.0 40.0 34.3
物    理 2.3 9.7 31.0 22.3 40.0 58.0 39.0 60.7 63.3 42.7
學生序號 11 12 13 14 15 16 17 18 19 20
數    學 78.3 50.0 65.7 66.3 68.0 95.0 90.7 87.7 103.7 86.7
物    理 49.7 46.7 83.3 59.7 50.0 101.3 76.7 86.0 99.7 99.0
學校規定平均名次小于或等于40.0者為優秀,大于40.0者為不優秀.
(1)對名次優秀者賦分2,對名次不優秀者賦分1,從這20名學生中隨機抽取2名,用ξ表示這兩名學生數學科得分的和,求ξ的分布列和數學期望;
(2)根據這次抽查數據,是否在犯錯誤的概率不超過0.025的前提下認為物理成績優秀與否和數學成績優秀與否有關系?(下面的臨界值表和公式可供參考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

右表是某班英語及數學成績的分布表,已知該班有50名學生,成績分1至5個檔次.如:表中所示英語成績為4分,數學成績為2分的學生有5人.現設該班任意一位學生的英語成績為m,數學成績為n.
n
m
數  學
5 4 3 2 1

 
5 1 3 1 0 1
4 1 0 7 5 1
3 2 1 0 9 3
2 1 b 6 0 a
1 0 0 1 1 3
(1)求m=4,n=3的概率;
(2)求在m≥3的條件下,n=3的概率;
(3)求a+b的值,并求m的數學期望;
(4)若m=2與n=4是相互獨立的,求a,b的值.

查看答案和解析>>

巳知無窮數列{an}的各項均為正整數,Sn為數列{an}的前n項和.
(Ⅰ)若數列{an}是等差數列,且對任意正整數n都有Sn3=(Sn)3成立,求數列{an}的通項公式;
(Ⅱ)對任意正整數n,從集合{a1,a2,a3,…an}中不重復地任取若干個數,這些數之間經過加減運算后所得數的絕對值為互不相同的正整數,且這些正整數與a1,a2,a3,…an一起恰好是1至Sn全體正整數組成的集合.
 (1)求a1,a2,的值;
 (2)求數列{an}的通項公式.

查看答案和解析>>

附 加 題:求矩陣A=
21
30
的特征值及對應的特征向量.

查看答案和解析>>

已知正整數滿足條件:對于任意正整數n,從集合中不重復地任取

若干個數,這些數之間經過加減運算后所得的數的絕對值為互不相同的正整數,且這些

正整數與一起恰好是1至Sn全體自然數組成的集合,其中Sn為數列的前n項和。

   (1)求a1,a2的值;(2)求數列的通項公式。

查看答案和解析>>

說明:

1.本解答給出的解法供參考.如果考生的解法與本解答不同,可根據試題的主要考查內容比照評分標準制訂相應的評分細則.

2.對計算題,當考生的解答在某一步出現錯誤時,如果后續部分的解答未改變該題的內容和難度,可視影響的程度決定給分,但不得超過該部分正確解答應得分數的一半;如果后續部分的解答有較嚴重的錯誤,就不再給分.

3.解答右端所注分數,表示考生正確做到這一步應得的累加分數.

4.只給整數分數,填空題不給中間分數.

一、填空題(本大題共14小題,每小題5分,共70分)

1.{0,1}       2.1       3.2      4.-3       5.5      6.[2,5]    

7.60            8.4      9.   10.(,)     11.     12.4 

13.        14.(,]

二、解答題(本大題共6小題,共90分.解答應寫出文字說明、證明過程或演算步驟)

15.(本題滿分14分)

解:(1)tana==,…………………………………………3分

所以=,又因為sin2a+cos2a=1,

解得sina=.………………………………………………………7分

(2)因為0<a<<bp,所以0<bap

因為cos(ba)=,所以sin(ba)=.……………………9分

所以sinb=sin[(ba)+a]

=sin(ba)cosa+cos(ba)sina=×+×=,……12分

因為b∈(,p),

所以b=.………………………………………………………14分

 

16.(本題滿分14分)

證明:(1)取AB1中點F,連結DF,CF.因為DA1B1中點,

所以DF∥=AA1

因為ECC1中點,AA1∥=CC1,

所以CE∥=DF

所以四邊形CFDE為平行四邊形.

所以DECF.…………………………………………………4分

因為CFÌ平面ABCDE(/平面ABC,

所以DE∥平面ABC.…………………………………………7分

(2) 因為AA1C1C為矩形,所以AC^CC1

因為BB1C1C為菱形,所以CC1CBB1C^BC1.…………8分

因為ACABCC1=3∶5∶4,

所以ACABBC=3∶5∶4,

所以AC2BC2AB2.……………………………………10分

所以AC^BC

所以AC^平面BB1C1C.…………………………………12分

所以AC^BC1

所以BC1^平面AB1C.……………………………………14分

 

 

 

 

 

 

 

 

 

17.(本題滿分14分)

解:(1)設從A地運出的油量為a,根據題設,直接運油到B地,往返油耗等于a,

所以B地收到的油量為(1-)a

所以運油率P1==.……………………………………3分

而從A地運出的油量為a時,C地收到的油量為(1-)a,

B地收到的油量(1-)(1-)a,

所以運油率P2

=(1-)(1-)=(+)(1-).…………………………7分

所以P2P1x(1-x),因為0<x<1,

所以P2P1>0,即P2P1.…………………………………………9分

(2)因為P2=(+)(1-)≤=.

當且僅當+=1-,即x=時,取“=”.

所以當C地為AB中點時,運油率P2有最大值.……………………………………14分

18.(本題滿分16分)

解:(1)因為拋物線頂點在原點,準線方程為x=-1,

所以拋物線開口向右,且-=-1,所以p=2.

所以所求的拋物線方程為y2=4x.…………………………………………4分

(2)設P(x0,y0),則y02=4x0,半徑rPFx0+1,

P的方程為(xx0)2+(yy0)2=(x0+1)2,……………………………6分

AB的方程為y=2xb,由AB=2CD得,

圓心P到直線AB的距離2d=,……………………………6分

所以5d2r2,即dr

因為r=|x0+1|,d=,

代入得ㄏ2x0y0bㄏ=ㄏx0+1ㄏ.…………………………………8分

即2x0y0bx0+1或2x0y0b=-x0-1.

所以x0y0b-1=0或3x0y0b+1=0.

因為y02=4x0,所以x0y02,

代入得y02y0+(b-1)=0或y02y0+(b+1)=0.……………………10分

方程y02y0+(b-1)=0關于y0有解Û1-(b-1)≥0,b≤2.

方程y02y0+(b+1)=0.關于y0有解Û1-3(b+1)≥0,b≤-.…12分

綜上所述,b的最大值為2.……………………………………………14分

此時,y0=2,x0=1,rx0+1=2,

所以圓P的方程為(x-1)2+(y-2)2=4.……………………………16分

19.(本題滿分16分)

解: f ¢(x)=(x>0)  2分

   (1)由已知,得f ¢(x)在[1,+∞)上有解,即a=在(1,+∞)上有解,

       又x∈(1,+∞)時,<1,

所以a<1.又a>0,所以a的取值范圍是(0,1).………………………………6分

   (2)①當a≥時,

       因為f ¢(x)>0在(e,e2)上恒成立,這時f(x)在[e,e2]上為增函數,

所以當x=e時,f(x)minf(e)=1+  ……………………………………………… 8分

       ②當0<a≤時,

因為f ¢(x)<0在(e,e2)上恒成立,

這時f(x)在[e,e2]上為減函數,

所以,當x=e2時,f(x)minf(e2)=2-,…………………………………………10分

       ③當<a<時,令f¢(x)=0得,x=∈(e,e2),

又因為對于x∈(e,)有f ¢(x)<0,

對于x∈(,e2)有f ¢(x)>0,

所以當x=時,f(x)minf()=ln+1-.………………………………………14分

       綜上,f(x)在[e,e2]上的最小值為

       f(x)min=………………………………………16分

20.(本題滿分16分)

解:(1)由條件得an+2=(2+)an+1an,

所以an2an+1=2(an+1an),

bn+1=2bn,又b1a2a1=2,所以bn≠0,

從而=2對nN*成立,

所以數列{bn}是首項為b1=2,公比q=2的等比數列,

所以bn=2n.…………………………………………………6分

(2)由(1)得an1an=2n.所以(n+1)an1nan=(n+1)×2n,………………8分

所以2a2a1=2×21,

3a32a2=3×22

4a43a3=4×23,

…………,

nan-(n-1)an1n×2n1,

相加得nana1=2×21+3×22+4×23+…+n×2n1

所以2(nana1)=     2×22+3×23+…+(n-1)×2n1n×2n

兩式相減得:-(nana1)=2(21+22+…+2n1)-n×2n=2n1-4-n×2n,所以

an=2n-=.…………………………………………………………11分

(3)因為cn===4[-],…………13分

所以Snc1c2+…+cn

=4[-+-+-+…+-]

=4[-]=2-<2.…………………………………………………16分

 

南京市第十三中學2009屆高三年級第三次模擬考試

        數學附加卷答案   2009.5

1.(幾何證明選講)(本題滿分10分)

證明:證明:因為A,B,CD四點共圓,所以ÐADF=ÐABC

因為PFBC,所以ÐAFP=ÐABC.所以ÐAFP=ÐFQP

因為ÐAPF=ÐFPA,所以△APF∽△FPQ.所以=.………………5分

所以PF2PA×PD.因為PQ與圓相切,所以PQ2PA×PD

所以PF2PQ2.所以PFPQ.……………………………………………10分

 

2.(矩陣與變換)(本題滿分10分)

解:∵MN= =,

設直線y=2x+1上一點(x0,y0)在MN作用下變為(x¢,y¢),則

=, 即=,即

從而可得……………………………………5分

y0=2x0+1,代入得y¢=2(x¢-y¢)+1,

化簡得2x¢-y¢+1=0,即6x¢-5y¢+3=0.

即變換后的直線方程是6x-5y+3=0.…………………………10分

 

3.(坐標系與參數方程)(本題滿分10分)

解:⊙O的直角坐標方程是x2y2xy=0,

即(x-)2+(y-)2=.………………………………………………3分

直線l的極坐標方程為r(cosq-sinq)=4,

直線l的直角坐標方程為xy-4=0.………………………………6分

M(+cosq,+sinq)為⊙C上任意一點,M點到直線l的距離

d==,

q=時,dmin=.…………………………………………………10分

 

4.(不等式選講)(本題滿分10分)

解:因為++≥3=3,………………………………………4分

所以ㄏx+1ㄏ+ㄏx-1ㄏ≤3,

x∈[-,].…………………………………………………………10分

 

5.(本題滿分10分)

解:解:(1)選取的5只恰好組成完整“奧運會吉祥物”的概率

       ………………………………………………3分

   (2)ξ的取值為100,80,60,40.…………………………………4分

      

       ……………………………………………………8分

ξ的分布列為

ξ

100

80

60

40

       ……………………………………………………………………………………9分

Eξ=…………………………………………10分

 

6.(本題滿分10分)

解:(1)∵,∴.

).

).

).

).

數列為等比數列,其公比為,首項

,且,∴.

.  

.…………………………………………………………4分.

   (2)∵,

     ∴  .

.

,        ①

2.       ②

①-②得 -,

             

              ,

.…………………………………………………6分.

)==.

時,=;

時,-()=4(4-5)=-4,

時,,

,

時,總有.…………………………………………………10分.

時,總有

 

 

 


同步練習冊答案
久久精品免费一区二区视