解:[方法一](1)證明:在線段BC1上取中點F.連結EF.DF則由題意得EF∥DA1.且EF=DA1.∴四邊形EFDA1是平行四邊形∴A1E∥平面BDC1 -6分 (2)由A1E⊥B1C1.A1E⊥CC1.得A1E⊥平面CBB1C1.過點E作EH⊥BC1于H.連結A1H.則∠A1HE為二面角A1-BC1-B1的平面角 -8分在Rt△BB1C1中.由BB1=8.B1C1=4.得BC1邊上的高為.∴EH=.又A1E=2,∴tan∠A1HE==>∴∠A1HE>60°. -11分∴M在棱AA1上時.二面角M-BC1-B1總大于60°.故棱AA1上不存在使二面角M-BC1-B1的大小為60°的點M. -12分[方法二]建立如圖所示的空間直角坐標系.題意知B,A1, C1.B1,=, =, =,=, =, =. ∴A1E∥平面BDC1 --------6分為平面A1BC1的一個法向量.則.且.即解得∴=為平面B1BC1的一個法向量.則.且.即解得∴=.∴cos<,>==-∴二面角A1-BC1-B1為arccos. 即arctan,又∵>∴二面角A1-BC1-B1大于60°. ∴M在棱AA1上時.二面角M-BC1-B1總大于60°.故棱AA1上不存在使二面角M-BC1-B1的大小為60°的點M. ---------12分 查看更多

 

題目列表(包括答案和解析)

已知是等差數列,其前n項和為Sn,是等比數列,且,.

(Ⅰ)求數列的通項公式;

(Ⅱ)記,,證明).

【解析】(1)設等差數列的公差為d,等比數列的公比為q.

,得,.

由條件,得方程組,解得

所以,.

(2)證明:(方法一)

由(1)得

     ①

   ②

由②-①得

(方法二:數學歸納法)

①  當n=1時,,,故等式成立.

②  假設當n=k時等式成立,即,則當n=k+1時,有:

   

   

,因此n=k+1時等式也成立

由①和②,可知對任意,成立.

 

查看答案和解析>>

已知向量),向量,

.

(Ⅰ)求向量; (Ⅱ)若,求.

【解析】本試題主要考查了向量的數量積的運算,以及兩角和差的三角函數關系式的運用。

(1)問中∵,∴,…………………1分

,得到三角關系是,結合,解得。

(2)由,解得,,結合二倍角公式,和,代入到兩角和的三角函數關系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②聯立方程解得,5分

     ……………6分

(Ⅱ)∵,,  …………7分

,               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

將①代入②中,可得   ③    …………………4分

將③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,從而.      …………………8分

由(Ⅰ)知, ;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

綜上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知, .                …………9分

             ……………10分

,且注意到

,又,∴   ………………………11分

綜上可得                    …………………12分

(若用,又∵ ∴ ,

 

查看答案和解析>>

設橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標原點.

(Ⅰ)若直線的斜率之積為,求橢圓的離心率;

(Ⅱ)若,證明直線的斜率 滿足

【解析】(1)解:設點P的坐標為.由題意,有  ①

,得

,可得,代入①并整理得

由于,故.于是,所以橢圓的離心率

(2)證明:(方法一)

依題意,直線OP的方程為,設點P的坐標為.

由條件得消去并整理得  ②

,

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依題意,直線OP的方程為,設點P的坐標為.

由P在橢圓上,有

因為,,所以,即   ③

,得整理得.

于是,代入③,

整理得

解得,

所以.

 

查看答案和解析>>

某地區對12歲兒童瞬時記憶能力進行調查.瞬時記憶能力包括聽覺記憶能力與視覺記憶能力.某班學生共有40人,下表為該班學生瞬時記憶能力的調查結果.例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學生為3人.

     視覺         [來源:]

視覺記憶能力

偏低

中等

偏高

超常

聽覺

記憶

能力

偏低

0

7

5

1

中等

1

8

3

偏高

2

0

1

超常

0

2

1

1

由于部分數據丟失,只知道從這40位學生中隨機抽取一個,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為

(I)試確定的值;

(II)從40人中任意抽取3人,求其中至少有一位具有聽覺記憶能力或視覺記憶能力超常的學生的概率;

(III)從40人中任意抽取3人,設具有聽覺記憶能力或視覺記憶能力偏高或超常的學生人數為,求隨機變量的數學期望

【解析】1)中由表格數據可知,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的學生共有(10+a)人.記“視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上”為事件A,則P(A)=(10+a)/40=2/5,解得a=6.……………2分

所以.b=40-(32+a)=40-38=2答:a的值為6,b的值為2.………………3分

(2)中由表格數據可知,具有聽覺記憶能力或視覺記憶能力超常的學生共有8人.

方法1:記“至少有一位具有聽覺記憶能力或視覺記憶能力超常的學生”為事件B,

則“沒有一位具有聽覺記憶能力或視覺記憶能力超常的學生”為事件

(3)中由于從40位學生中任意抽取3位的結果數為,其中具有聽覺記憶能力或視覺記憶能力偏高或超常的學生共24人,從40位學生中任意抽取3位,其中恰有k位具有聽覺記憶能力或視覺記憶能力偏高或超常的結果數為,………………………7分

所以從40位學生中任意抽取3位,其中恰有k位具有聽覺記憶能力或視覺記憶能力偏高或超常的概率為,k=0,1,2,3

 

查看答案和解析>>

已知遞增等差數列滿足:,且成等比數列.

(1)求數列的通項公式

(2)若不等式對任意恒成立,試猜想出實數的最小值,并證明.

【解析】本試題主要考查了數列的通項公式的運用以及數列求和的運用。第一問中,利用設數列公差為,

由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當時,;當時,;而,所以猜想,的最小值為然后加以證明即可。

解:(1)設數列公差為,由題意可知,即

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等價于,

時,;當時,;

,所以猜想,的最小值為.     …………8分

下證不等式對任意恒成立.

方法一:數學歸納法.

時,,成立.

假設當時,不等式成立,

時,, …………10分

只要證  ,只要證 

只要證  ,只要證  ,

只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

方法二:單調性證明.

要證 

只要證  ,  

設數列的通項公式,        …………10分

,    …………12分

所以對,都有,可知數列為單調遞減數列.

,所以恒成立,

的最小值為

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视