由.當且僅當時等號成立.得出. 因此第8年利潤最高為520萬元. 查看更多

 

題目列表(包括答案和解析)

已知f(x)=a2x-x3,x∈(-2,2)為正常數.
(1)可以證明:定理“若a、b∈R*,則(當且僅當a=b時取等號)”推廣到三個正數時結論是正確的,試寫出推廣后的結論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數f(x)的最大值大于1,求實數a的取值范圍,并由此猜測y=f(x)的單調性(無需證明);
(3)對滿足(2)的條件的一個常數a,設x=x1時,f(x)取得最大值.試構造一個定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數g(x),使當x∈(-2,2)時,g(x)=f(x),當x∈D時,g(x)取得最大值的自變量的值構成以x1為首項的等差數列.

查看答案和解析>>

已知f(x)=a2x-x3,x∈(-2,2)為正常數.
(1)可以證明:定理“若a、b∈R*,則(當且僅當a=b時取等號)”推廣到三個正數時結論是正確的,試寫出推廣后的結論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數f(x)的最大值大于1,求實數a的取值范圍,并由此猜測y=f(x)的單調性(無需證明);
(3)對滿足(2)的條件的一個常數a,設x=x1時,f(x)取得最大值.試構造一個定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數g(x),使當x∈(-2,2)時,g(x)=f(x),當x∈D時,g(x)取得最大值的自變量的值構成以x1為首項的等差數列.

查看答案和解析>>

已知f(x)=a2x-
1
2
x3,x∈(-2,2)為正常數.
(1)可以證明:定理“若a、b∈R*,則
a+b
2
ab
(當且僅當a=b時取等號)”推廣到三個正數時結論是正確的,試寫出推廣后的結論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數f(x)的最大值大于1,求實數a的取值范圍,并由此猜測y=f(x)的單調性(無需證明);
(3)對滿足(2)的條件的一個常數a,設x=x1時,f(x)取得最大值.試構造一個定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數g(x),使當x∈(-2,2)時,g(x)=f(x),當x∈D時,g(x)取得最大值的自變量的值構成以x1為首項的等差數列.

查看答案和解析>>

已知f(x)=a2x-
1
2
x3,x∈(-2,2)為正常數.
(1)可以證明:定理“若a、b∈R*,則
a+b
2
ab
(當且僅當a=b時取等號)”推廣到三個正數時結論是正確的,試寫出推廣后的結論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數f(x)的最大值大于1,求實數a的取值范圍,并由此猜測y=f(x)的單調性(無需證明);
(3)對滿足(2)的條件的一個常數a,設x=x1時,f(x)取得最大值.試構造一個定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數g(x),使當x∈(-2,2)時,g(x)=f(x),當x∈D時,g(x)取得最大值的自變量的值構成以x1為首項的等差數列.

查看答案和解析>>

已知數列是各項均不為0的等差數列,公差為d,為其前n項和,且滿足,.數列滿足,,為數列的前n項和.

(1)求數列的通項公式和數列的前n項和;

(2)若對任意的,不等式恒成立,求實數的取值范圍;

(3)是否存在正整數,使得成等比數列?若存在,求出所有的值;若不存在,請說明理由.

【解析】第一問利用在中,令n=1,n=2,

   即      

解得,, [

時,滿足

,

第二問,①當n為偶數時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當n為奇數時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

第三問,

     若成等比數列,則,

即.

,可得,即,

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

(2)①當n為偶數時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當n為奇數時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

綜合①、②可得的取值范圍是

(3),

     若成等比數列,則

即.

,可得,即,

,且m>1,所以m=2,此時n=12.

因此,當且僅當m=2, n=12時,數列中的成等比數列

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视