依題意函數 查看更多

 

題目列表(包括答案和解析)

函數概念的發展歷程

  17世紀,科學家們致力于運動的研究,如計算天體的位置,遠距離航海中對經度和緯度的測量,炮彈的速度對于高度和射程的影響等.諸如此類的問題都需要探究兩個變量之間的關系,并根據這種關系對事物的變化規律作出判斷,如根據炮彈的速度推測它能達到的高度和射程.這正是函數產生和發展的背景.

  “function”一詞最初由德國數學家萊布尼茲(G.W.Leibniz,1646~1716)在1692年使用.在中國,清代數學家李善蘭(1811~1882)在1859年和英國傳教士偉烈亞力合譯的《代徽積拾級》中首次將“function”譯做“函數”.

  萊布尼茲用“函數”表示隨曲線的變化而改變的幾何量,如坐標、切線等.1718年,他的學生,瑞士數學家約翰·伯努利(J.Bernoulli,1667~1748)強調函數要用公式表示.后來,數學家認為這不是判斷函數的標準.只要一些變量變化,另一些變量隨之變化就可以了.所以,1755年,瑞士數學家歐拉(L.Euler,1707~1783)將函數定義為“如果某些變量,以一種方式依賴于另一些變量,我們將前面的變量稱為后面變量的函數”.

  當時很多數學家對于不用公式表示函數很不習慣,甚至抱懷疑態度.函數的概念仍然是比較模糊的.

  隨著對微積分研究的深入,18世紀末19世紀初,人們對函數的認識向前推進了.德國數學家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年時提出:“如果對于x的每一個值,y總有一個完全確定的值與之對應,則y是x的函數”.這個定義較清楚地說明了函數的內涵.只要有一個法則,使得取值范圍中的每一個值,有一個確定的y和它對應就行了,不管這個法則是公式、圖象、表格還是其他形式.19世紀70年代以后,隨著集合概念的出現,函數概念又進而用更加嚴謹的集合和對應語言表述,這就是本節學習的函數概念.

  綜上所述可知,函數概念的發展與生產、生活以及科學技術的實際需要緊密相關,而且隨著研究的深入,函數概念不斷得到嚴謹化、精確化的表達,這與我們學習函數的過程是一樣的.

你能以函數概念的發展為背景,談談從初中到高中學習函數概念的體會嗎?

1.探尋科學家發現問題的過程,對指導我們的學習有什么現實意義?

2.萊布尼茲、狄利克雷等科學家有哪些品質值得我們學習?

查看答案和解析>>

已知函數,.

(Ⅰ)若函數依次在處取到極值.求的取值范圍;

(Ⅱ)若存在實數,使對任意的,不等式 恒成立.求正整數的最大值.

【解析】第一問中利用導數在在處取到極值點可知導數為零可以解得方程有三個不同的實數根來分析求解。

第二問中,利用存在實數,使對任意的,不等式 恒成立轉化為,恒成立,分離參數法求解得到范圍。

解:(1)

(2)不等式 ,即,即.

轉化為存在實數,使對任意的,不等式恒成立.

即不等式上恒成立.

即不等式上恒成立.

,則.

,則,因為,有.

在區間上是減函數。又

故存在,使得.

時,有,當時,有.

從而在區間上遞增,在區間上遞減.

[來源:]

所以當時,恒有;當時,恒有;

故使命題成立的正整數m的最大值為5

 

查看答案和解析>>

解析:依題意得f(x)的圖象關于直線x=1對稱,f(x+1)=-f(x-1),f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),即函數f(x)是以4為周期的函數.由f(x)在[3,5]上是增函數與f(x)的圖象關于直線x=1對稱得,f(x)在[-3,-1]上是減函數.又函數f(x)是以4為周期的函數,因此f(x)在[1,3]上是減函數,f(x)在[1,3]上的最大值是f(1),最小值是f(3).

答案:A

查看答案和解析>>

設定義在上的兩個函數,其值域依次是,有下列4個命題:

①“”是“對任意恒成立”的充要條件;

②“”是“對任意恒成立”的充分不必要條件;

③“”是“對任意恒成立”的充要條件;

④“”是“對任意恒成立”的充分不必要條件.

其中正確的命題是        (請寫出所有正確命題的序號).

查看答案和解析>>

設定義在上的兩個函數、,其值域依次是,有下列4個命題:

①若,則對任意,恒成立;

②若存在,使成立,則必有;

③若對任意恒成立,則必有

④若,則對任意恒成立.

其中正確的命題是        (請寫出所有正確命題的序號).

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视