(Ⅰ)證明.并且不存在.使得, 查看更多

 

題目列表(包括答案和解析)

已知函數
(Ⅰ)求函數的極值;
(Ⅱ)對于曲線上的不同兩點,,如果存在曲線上的點,且,使得曲線在點處的切線,則稱為弦的伴隨切線。特別地,當時,又稱的λ-伴隨切線。
(。┣笞C:曲線的任意一條弦均有伴隨切線,并且伴隨切線是唯一的;
(ⅱ)是否存在曲線C,使得曲線C的任意一條弦均有伴隨切線?若存在,給出一條這樣的曲線 ,并證明你的結論; 若不存在 ,說明理由。

查看答案和解析>>

對函數,若存在,使得(其中A,B為常數),則稱為“可分解函數”。
(1)試判斷是否為“可分解函數”,若是,求出A,B的值;若不是,說明理由w*w^w.k&s#5@u.c~o*m;
(2)用反證法證明:不是“可分解函數”;
(3)若是“可分解函數”,則求a的取值范圍,并寫出A,B關于a的相應的表達式。

查看答案和解析>>

已知f(x)=
2x2+a
x
,且f(1)=3,
(1)試求a的值,并證明f(x)在[
2
2
,+∞)上單調遞增.
(2)設關于x的方程f(x)=x+b的兩根為x1,x2,試問是否存在實數m,使得不等式m2+tm+1≥|x1-x2|對任意的b∈[2,
13
]及t∈[-1,1]恒成立?若存在,求出m的取值范圍;若不存在說明理由.

查看答案和解析>>

已知f(x)=
2x2+a
x
,且f(1)=3,
(1)試求a的值,并證明f(x)在[
2
2
,+∞)上單調遞增.
(2)設關于x的方程f(x)=x+b的兩根為x1,x2,試問是否存在實數m,使得不等式m2+tm+1≥|x1-x2|對任意的b∈[2,
13
]及t∈[-1,1]恒成立?若存在,求出m的取值范圍;若不存在說明理由.

查看答案和解析>>

(2014•宜賓一模)如圖,直角梯形ABCD中,∠ABC=∠BAD=90°,AB=BC且△ABC的面積等于△ADC面積的
12
.梯形ABCD所在平面外有一點P,滿足PA⊥平面ABCD,PA=AB.
(1)求證:平面PCD⊥平面PAC;
(2)側棱PA上是否存在點E,使得BE∥平面PCD?若存在,指出點E的位置并證明;若不存在,請說明理由.
(3)求二面角A-PD-C的余弦值.

查看答案和解析>>

 

一、選擇題:本題考查基本知識和基本運算,每小題5分,滿分60分.

(1)A      (2)B     (3)D     (4)C      (5)A    (6)B

(7)C      (8)A     (9)D     (10)C     (11)B    (12)A

二、填空題:本題考查基本知識和基本運算,每小題4分,滿分16分.

(13)                         (14)

(15)2                                        (16)

三、解答題

(17)本小題主要考查三角函數的基本公式和三角函數的恒等變換等基本知識,以及推理能力和運算能力.滿分12分.

      解:由已知.

  

      從而 

.

(18)本小題主要考查線面關系和正方體性質等基本知識,考查空間想象能力和推理論證能力.滿分12分.

      解法一:(I)連結BP.

      ∵AB⊥平面BCC1B1,  ∴AP與平面BCC1B1所成的角就是∠APB,

      ∵CC1=4CP,CC1=4,∴CP=I.

      在Rt△PBC中,∠PCB為直角,BC=4,CP=1,故BP=.

      在Rt△APB中,∠ABP為直角,tan∠APB=

      ∴∠APB=

(19)本小題主要考查簡單線性規劃的基本知識,以及運用數學知識解決實際問題的能力.滿分12分.

      解:設投資人分別用x萬元、y萬元投資甲、乙兩個項目.

      由題意知

      目標函數z=x+0.5y.

      上述不等式組表示的平面區域如圖所示,陰影部分(含邊界)即可行域.

      與可行域相交,其中有一條直線經過可行域上的M點,且

      與直線的距離最大,這里M點是直線

      和的交點.

       解方程組 得x=4,y=6

      此時(萬元).

          x=4,y=6時z取得最大值.

      答:投資人用4萬元投資甲項目、6萬元投資乙項目,才能在確保虧損不超過1.8萬元的前提下,使可能的盈利最大.

(20)本小題主要考查數列的基本知識,以及運用數學知識分析和解決問題的能力.滿分12分.

      解:(I)當時,

             

       由,

       即              又.

       (II)設數列{an}的公差為d,則在中分別取k=1,2,得

(1)

(2)

       由(1)得

       當

       若成立

       若

          故所得數列不符合題意.

       當

       若

       若.

       綜上,共有3個滿足條件的無窮等差數列:

       ①{an} : an=0,即0,0,0,…;

       ②{an} : an=1,即1,1,1,…;

       ③{an} : an=2n-1,即1,3,5,…,

(21)本小題主要考查直線、橢圓和向量等基本知識,以及推理能力和運算能力.滿分12分.

       解:(I)設所求橢圓方程是

       由已知,得    所以.

       故所求的橢圓方程是

       (II)設Q(),直線

       當由定比分點坐標公式,得

      

       .

       于是   故直線l的斜率是0,.

(22)本小題主要考查函數、不等式等基本知識,以及綜合運用數學知識解決問題的能力.滿分14分.

       證明:(I)任取 

       和  ②

       可知

       從而 .  假設有①式知

      

       ∴不存在

       (II)由                        ③

       可知   ④

       由①式,得   ⑤

       由和②式知,   ⑥

       由⑤、⑥代入④式,得

                          

(III)由③式可知

  (用②式)

       (用①式)

久久精品免费一区二区视