題目列表(包括答案和解析)
設橢圓的左、右頂點分別為
,點
在橢圓上且異于
兩點,
為坐標原點.
(Ⅰ)若直線與
的斜率之積為
,求橢圓的離心率;
(Ⅱ)若,證明直線
的斜率
滿足
【解析】(1)解:設點P的坐標為.由題意,有
①
由,得
,
由,可得
,代入①并整理得
由于,故
.于是
,所以橢圓的離心率
(2)證明:(方法一)
依題意,直線OP的方程為,設點P的坐標為
.
由條件得消去
并整理得
②
由,
及
,
得.
整理得.而
,于是
,代入②,
整理得
由,故
,因此
.
所以.
(方法二)
依題意,直線OP的方程為,設點P的坐標為
.
由P在橢圓上,有
因為,
,所以
,即
③
由,
,得
整理得
.
于是,代入③,
整理得
解得,
所以.
已知m>1,直線,橢圓C:
,
、
分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點時,求直線的方程;
(Ⅱ)設直線與橢圓C交于A、B兩點,△A、△B
的重心分別為G、H.若原點O在以線段GH為直徑的圓內,求實數m的取值范圍.[
【解析】第一問中因為直線經過點
(
,0),所以
=
,得
.又因為m>1,所以
,故直線的方程為
第二問中設,由
,消去x,得
,
則由,知
<8,且有
由題意知O為的中點.由
可知
從而
,設M是GH的中點,則M(
).
由題意可知,2|MO|<|GH|,得到范圍
設雙曲線的兩個焦點分別為
、
,離心率為2.
(1)求雙曲線的漸近線方程;
(2)過點能否作出直線
,使
與雙曲線
交于
、
兩點,且
,若存在,求出直線方程,若不存在,說明理由.
【解析】(1)根據離心率先求出a2的值,然后令雙曲線等于右側的1為0,解此方程可得雙曲線的漸近線方程.
(2)設直線l的方程為,然后直線方程與雙曲線方程聯立,消去y,得到關于x的一元二次方程,利用韋達定理
表示此條件,得到關于k的方程,解出k的值,然后驗證判別式是否大于零即可.
雙曲線的一條漸近線為
,由方程組
,消去y,得
有唯一解,所以△=
,
所以,
,故選D. w.w.w.k.s.5.u.c.o.m
答案:D.
【命題立意】:本題考查了雙曲線的漸近線的方程和離心率的概念,以及直線與拋物線的位置關系,只有一個公共點,則解方程組有唯一解.本題較好地考查了基本概念基本方法和基本技能.
x2 |
m |
y2 |
27 |
|
A、[9,+∞) |
B、(1,9] |
C、(1,2] |
D、[2,+∞) |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com