當時.得或,當時.得或. 查看更多

 

題目列表(包括答案和解析)

已知函數=.

(Ⅰ)當時,求不等式 ≥3的解集;

(Ⅱ) 若的解集包含,求的取值范圍.

【命題意圖】本題主要考查含絕對值不等式的解法,是簡單題.

【解析】(Ⅰ)當時,=,

≤2時,由≥3得,解得≤1;

當2<<3時,≥3,無解;

≥3時,由≥3得≥3,解得≥8,

≥3的解集為{|≤1或≥8};

(Ⅱ) ,

∈[1,2]時,==2,

,有條件得,即,

故滿足條件的的取值范圍為[-3,0]

 

查看答案和解析>>

已知函數數學公式
(1)當數學公式時,求f(x)的反函數g(x);
(2)求關于x的函數y=[g(x)]2-2ag(x)+3(a≤3)當x∈[-1.1]時的最小值h(a);
(3)我們把同時滿足下列兩個性質的函數稱為“和諧函數”:
①函數在整個定義域上是單調增函數或單調減函數;
②在函數的定義域內存在區間[p,q](p<q)使得函數在區間[p,q]上的值域為[p2,q2].
(Ⅰ)判斷(2)中h(x)是否為“和諧函數”?若是,求出p,q的值或關系式;若不是,請說明理由;
(Ⅱ)若關于x的函數y=數學公式+t(x≥1)是“和諧函數”,求實數t的取值范圍.

查看答案和解析>>

已知函數,
(1)當時,求f(x)的反函數g(x);
(2)求關于x的函數y=[g(x)]2-2ag(x)+3(a≤3)當x∈[-1.1]時的最小值h(a);
(3)我們把同時滿足下列兩個性質的函數稱為“和諧函數”:
①函數在整個定義域上是單調增函數或單調減函數;
②在函數的定義域內存在區間[p,q](p<q)使得函數在區間[p,q]上的值域為[p2,q2].
(Ⅰ)判斷(2)中h(x)是否為“和諧函數”?若是,求出p,q的值或關系式;若不是,請說明理由;
(Ⅱ)若關于x的函數y=+t(x≥1)是“和諧函數”,求實數t的取值范圍.

查看答案和解析>>

已知函數,
(1)當時,求f(x)的反函數g(x);
(2)求關于x的函數y=[g(x)]2-2ag(x)+3(a≤3)當x∈[-1.1]時的最小值h(a);
(3)我們把同時滿足下列兩個性質的函數稱為“和諧函數”:
①函數在整個定義域上是單調增函數或單調減函數;
②在函數的定義域內存在區間[p,q](p<q)使得函數在區間[p,q]上的值域為[p2,q2].
(Ⅰ)判斷(2)中h(x)是否為“和諧函數”?若是,求出p,q的值或關系式;若不是,請說明理由;
(Ⅱ)若關于x的函數y=+t(x≥1)是“和諧函數”,求實數t的取值范圍.

查看答案和解析>>

已知函數

(1)當時,討論函數的單調性:

(2)若函數的圖像上存在不同兩點,設線段的中點為,使得在點處的切線與直線平行或重合,則說函數是“中值平衡函數”,切線叫做函數的“中值平衡切線”。試判斷函數是否是“中值平衡函數”?若是,判斷函數的“中值平衡切線”的條數;若不是,說明理由.

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视