又由(I).知 查看更多

 

題目列表(包括答案和解析)

 已知函數。

(I)求函數的極值;

    (II)對于曲線上的不同兩點P1(x1,y1),P2(x2,y2),如果存在曲線上的點Q(x0,y0),    且x1<x0<x2,使得曲線在點Q處的切線//P1P2,,則稱為弦P1P2,的伴隨切線。

特別地,當x0 = x1 + (1-)x2 (0<<1)時,又稱為弦P1P2,-伴隨切線。

(i)求證:曲線y=f(x)的任意一條弦均有伴隨切線,并且伴隨切線是唯一的;

(ii)是否存在曲線C,使得曲線C的任意一條弦均有-伴隨切線?若存在,給出一條這樣的曲線,并證明你的結論;若不存在,說明理由。

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

已知數列滿足(I)求數列的通項公式;

(II)若數列,前項和為,且證明:

【解析】第一問中,利用,

∴數列{}是以首項a1+1,公比為2的等比數列,即 

第二問中, 

進一步得到得    即

是等差數列.

然后結合公式求解。

解:(I)  解法二、

∴數列{}是以首項a1+1,公比為2的等比數列,即 

(II)     ………②

由②可得: …………③

③-②,得    即 …………④

又由④可得 …………⑤

⑤-④得

是等差數列.

     

 

查看答案和解析>>

已知函數f(x)=,為常數。

(I)當=1時,求f(x)的單調區間;

(II)若函數f(x)在區間[1,2]上為單調函數,求的取值范圍。

【解析】本試題主要考查了導數在研究函數中的運用。第一問中,利用當a=1時,f(x)=,則f(x)的定義域是然后求導,,得到由,得0<x<1;由,得x>1;得到單調區間。第二問函數f(x)在區間[1,2]上為單調函數,則在區間[1,2]上恒成立,即即,或在區間[1,2]上恒成立,解得a的范圍。

(1)當a=1時,f(x)=,則f(x)的定義域是

。

,得0<x<1;由,得x>1;

∴f(x)在(0,1)上是增函數,在(1,上是減函數!6分

(2)。若函數f(x)在區間[1,2]上為單調函數,

在區間[1,2]上恒成立。∴,或在區間[1,2]上恒成立。即,或在區間[1,2]上恒成立。

又h(x)=在區間[1,2]上是增函數。h(x)max=(2)=,h(x)min=h(1)=3

,或。    ∴,或。

 

查看答案和解析>>

已知函數f(x)=-x2+ax+1-lnx.
(I)若函數f(x)在區間(0,
12
)
上是減函數,求實數a的取值范圍.
(II)試討論函數f(x)是否既有極大值又有極小值?若有,求出a的取值范圍;若沒有,請說明理由.

查看答案和解析>>

已知函數f(x)=-x2+ax+1-lnx.
(I)若函數f(x)在區間數學公式上是減函數,求實數a的取值范圍.
(II)試討論函數f(x)是否既有極大值又有極小值?若有,求出a的取值范圍;若沒有,請說明理由.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视