即存在①當時.有,② 當.時.有成立. 查看更多

 

題目列表(包括答案和解析)

,  

(1)當時,求曲線處的切線方程;

(2)如果存在,使得成立,求滿足上述條件的最大整數;

(3)如果對任意的,都有成立,求實數的取值范圍.

【解析】(1)求出切點坐標和切線斜率,寫出切線方程;(2)存在,轉化解決;(3)任意的,都有成立即恒成立,等價于恒成立

 

查看答案和解析>>

 已知函數,的一個零點,又 處有極值,在區間上是單調的,且在這兩個區間上的單調性相反.(1)求的取值范圍;(2)當時,求使成立的實數的取值范圍.

從而    或

所以存在實數,滿足題目要求.……………………12分

 

 

 

 

 

 

 

查看答案和解析>>

已知數列是各項均不為0的等差數列,公差為d,為其前n項和,且滿足,.數列滿足,,為數列的前n項和.

(1)求數列的通項公式和數列的前n項和

(2)若對任意的,不等式恒成立,求實數的取值范圍;

(3)是否存在正整數,使得成等比數列?若存在,求出所有的值;若不存在,請說明理由.

【解析】第一問利用在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

,

第二問,①當n為偶數時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當n為奇數時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

第三問,

     若成等比數列,則,

即.

,可得,即,

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

(2)①當n為偶數時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當n為奇數時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

綜合①、②可得的取值范圍是

(3)

     若成等比數列,則,

即.

,可得,即,

,且m>1,所以m=2,此時n=12.

因此,當且僅當m=2, n=12時,數列中的成等比數列

 

查看答案和解析>>

已知,函數

(1)當時,求函數在點(1,)的切線方程;

(2)求函數在[-1,1]的極值;

(3)若在上至少存在一個實數x0,使>g(xo)成立,求正實數的取值范圍。

【解析】本試題中導數在研究函數中的運用。(1)中,那么當時,  又    所以函數在點(1,)的切線方程為;(2)中令   有 

對a分類討論,和得到極值。(3)中,設,,依題意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  當時,  又    

∴  函數在點(1,)的切線方程為 --------4分

(Ⅱ)令   有 

①         當

(-1,0)

0

(0,

,1)

+

0

0

+

極大值

極小值

的極大值是,極小值是

②         當時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

綜上所述   時,極大值為,無極小值

時  極大值是,極小值是        ----------8分

(Ⅲ)設

求導,得

,    

在區間上為增函數,則

依題意,只需,即 

解得  (舍去)

則正實數的取值范圍是(,

 

查看答案和解析>>

已知函數;

(1)若函數在其定義域內為單調遞增函數,求實數的取值范圍。

(2)若函數,若在[1,e]上至少存在一個x的值使成立,求實數的取值范圍。

【解析】第一問中,利用導數,因為在其定義域內的單調遞增函數,所以 內滿足恒成立,得到結論第二問中,在[1,e]上至少存在一個x的值使成立,等價于不等式 在[1,e]上有解,轉換為不等式有解來解答即可。

解:(1),

因為在其定義域內的單調遞增函數,

所以 內滿足恒成立,即恒成立,

亦即,

即可  又

當且僅當,即x=1時取等號,

在其定義域內為單調增函數的實數k的取值范圍是.

(2)在[1,e]上至少存在一個x的值使成立,等價于不等式 在[1,e]上有解,設

 上的增函數,依題意需

實數k的取值范圍是

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视