因為.所以當或時.. 查看更多

 

題目列表(包括答案和解析)

求證:在△ABC中,若∠C是直角,則∠B一定是銳角.

證明:假設___________,則∠B是直角或鈍角.

(1)當∠B是直角時,因為∠C是直角,所以∠B+∠C=180°,與三角形的內角和定理矛盾.

(2)當∠B為鈍角時,∠B+∠C>180°,同理矛盾.故___________,原命題成立.

查看答案和解析>>

已知函數

(1)求函數的定義域;

(2)求函數在區間上的最小值;

(3)已知,命題p:關于x的不等式對函數的定義域上的任意恒成立;命題q:指數函數是增函數.若“p或q”為真,“p且q”為假,求實數m的取值范圍.

【解析】第一問中,利用由 即

第二問中,,得:

第三問中,由在函數的定義域上 的任意,,當且僅當時等號成立。當命題p為真時,;而命題q為真時:指數函數.因為“p或q”為真,“p且q”為假,所以

當命題p為真,命題q為假時;當命題p為假,命題q為真時分為兩種情況討論即可 。

解:(1)由 即

(2),得:

,

(3)由在函數的定義域上 的任意,,當且僅當時等號成立。當命題p為真時,;而命題q為真時:指數函數.因為“p或q”為真,“p且q”為假,所以

當命題p為真,命題q為假時,

當命題p為假,命題q為真時,

所以

 

查看答案和解析>>

請先閱讀:

設平面向量=(a1,a2),=(b1,b2),且的夾角為è,

因為=||||cosè,

所以≤||||.

,

當且僅當è=0時,等號成立.

(I)利用上述想法(或其他方法),結合空間向量,證明:對于任意a1,a2,a3,b1,b2,b3∈R,都有成立;

(II)試求函數的最大值.

查看答案和解析>>

請先閱讀:
設平面向量=(a1,a2),=(b1,b2),且的夾角為θ,
因為=||||cosθ,
所以≤||||.

當且僅當θ=0時,等號成立.
(I)利用上述想法(或其他方法),結合空間向量,證明:對于任意a1,a2,a3,b1,b2,b3∈R,都有成立;
(II)試求函數的最大值.

查看答案和解析>>

如圖,已知點和單位圓上半部分上的動點B.

(1)若,求向量

(2)求的最大值.

【解析】對于這樣的向量的坐標和模最值的求解,利用建立直角坐標系的方法可知。

第一問中,依題意,,

因為,所以,即,

解得,所以

第二問中,結合三角函數的性質得到最值。

(1)依題意,(不含1個或2個端點也對)

, (寫出1個即可)

因為,所以,即,

解得,所以.-

(2),

 時,取得最大值,

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视