題目列表(包括答案和解析)
(13分)如圖,當甲船位于處時獲悉,在其正東方向相距20海里的
處有一艘漁船遇險等待營救.甲船立即前往救援,同時把消息告知在甲船的南偏西30
,相距10海里
處的乙船.
(Ⅰ)求處于處的乙船和遇險漁船間的距離;
(Ⅱ)設乙船沿直線方向前往
處救援,其方向與
成
角,求
的值域.
設函數.
(Ⅰ) 當時,求
的單調區間;
(Ⅱ) 若在
上的最大值為
,求
的值.
【解析】第一問中利用函數的定義域為(0,2),
.
當a=1時,所以
的單調遞增區間為(0,
),單調遞減區間為(
,2);
第二問中,利用當時,
>0, 即
在
上單調遞增,故
在
上的最大值為f(1)=a 因此a=1/2.
解:函數的定義域為(0,2),
.
(1)當時,
所以
的單調遞增區間為(0,
),單調遞減區間為(
,2);
(2)當時,
>0, 即
在
上單調遞增,故
在
上的最大值為f(1)=a 因此a=1/2.
已知函數,
.
(Ⅰ)若函數和函數
在區間
上均為增函數,求實數
的取值范圍;
(Ⅱ)若方程有唯一解,求實數
的值.
【解析】第一問,
當0<x<2時,,當x>2時,
,
要使在(a,a+1)上遞增,必須
如使在(a,a+1)上遞增,必須
,即
由上得出,當時
,
在
上均為增函數
(Ⅱ)中方程有唯一解
有唯一解
設 (x>0)
隨x變化如下表
x |
|
|
|
|
- |
|
+ |
|
|
極小值 |
|
由于在上,
只有一個極小值,
的最小值為-24-16ln2,
當m=-24-16ln2時,方程有唯一解得到結論。
(Ⅰ)解:
當0<x<2時,,當x>2時,
,
要使在(a,a+1)上遞增,必須
如使在(a,a+1)上遞增,必須
,即
由上得出,當時
,
在
上均為增函數 ……………6分
(Ⅱ)方程有唯一解
有唯一解
設 (x>0)
隨x變化如下表
x |
|
|
|
|
- |
|
+ |
|
|
極小值 |
|
由于在上,
只有一個極小值,
的最小值為-24-16ln2,
當m=-24-16ln2時,方程有唯一解
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com