題目列表(包括答案和解析)
已知點A(7,1),B(1,4),若直線y=ax與線段AB交于點C,且=2
,則實數a=________.
[答案] 1
[解析] 設C(x0,ax0),則=(x0-7,ax0-1),
=(1-x0,4-ax0),
∵=2
,∴
,解之得
.
【解析】如圖:|OB|=b,|O F1|=c.∴kPQ=,kMN=﹣
.
直線PQ為:y=(x+c),兩條漸近線為:y=
x.由
,得:Q(
,
);由
,得:P(
,
).∴直線MN為:y-
=﹣
(x-
),
令y=0得:xM=.又∵|MF2|=|F1F2|=2c,∴3c=xM=
,解之得:
,即e=
.
【答案】B
已知函數其中
為自然對數的底數,
.(Ⅰ)設
,求函數
的最值;(Ⅱ)若對于任意的
,都有
成立,求
的取值范圍.
【解析】第一問中,當時,
,
.結合表格和導數的知識判定單調性和極值,進而得到最值。
第二問中,∵,
,
∴原不等式等價于:,
即, 亦即
分離參數的思想求解參數的范圍
解:(Ⅰ)當時,
,
.
當在
上變化時,
,
的變化情況如下表:
|
|
|
|
|
|
|
|
- |
|
+ |
|
|
|
|
|
|
1/e |
∴時,
,
.
(Ⅱ)∵,
,
∴原不等式等價于:,
即, 亦即
.
∴對于任意的,原不等式恒成立,等價于
對
恒成立,
∵對于任意的時,
(當且僅當
時取等號).
∴只需,即
,解之得
或
.
因此,的取值范圍是
設橢圓的左、右頂點分別為
,點
在橢圓上且異于
兩點,
為坐標原點.
(Ⅰ)若直線與
的斜率之積為
,求橢圓的離心率;
(Ⅱ)若,證明直線
的斜率
滿足
【解析】(1)解:設點P的坐標為.由題意,有
①
由,得
,
由,可得
,代入①并整理得
由于,故
.于是
,所以橢圓的離心率
(2)證明:(方法一)
依題意,直線OP的方程為,設點P的坐標為
.
由條件得消去
并整理得
②
由,
及
,
得.
整理得.而
,于是
,代入②,
整理得
由,故
,因此
.
所以.
(方法二)
依題意,直線OP的方程為,設點P的坐標為
.
由P在橢圓上,有
因為,
,所以
,即
③
由,
,得
整理得
.
于是,代入③,
整理得
解得,
所以.
x2 |
9 |
y2 |
4 |
| ||
2 |
x2 |
16 |
y2 |
4 |
2 |
1 |
2 |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com