11.設偶函數 查看更多

 

題目列表(包括答案和解析)

設偶函數f(x),且f(x)=(
1
2
)x,x≤0
,則f(x)=
2
的實數x的值為
 

查看答案和解析>>

13、設偶函數f(x)的定義域為R,當x∈[0,+∞)時f(x)是增函數,則f(-2),f(π),f(-3)的大小關系是
f(π)>f(-3)>f(-2)

查看答案和解析>>

5、設偶函數f(x)的定義域為R,當x∈[0,+∞)時f(x)是增函數,則f(-2),f(π),f(-3)的大小關系是( 。

查看答案和解析>>

9、設偶函數f(x)=loga|x-b|在(-∞,0)為增函數,則f(a+1)與f(b+2)的大小關系是
f(a+1)>f(b+2)

查看答案和解析>>

6、設偶函數f(x)在[0,+∞)上為增函數,且f(2)•f(4)<0,那么下列四個命題中一定正確的是( 。

查看答案和解析>>

 

一、選擇題(本大題共12個小題,每小題5分,共60分)

    1―5  BCBAB    6―10  CDBDD   11―12AB

20090323

13.9

14.

15.(1,0)

16.420

三、解答題:

17.解:(1)

   (2)由(1)知,

       

18.解:設“通過第一關”為事件A1,“補過且通過第一關”為事件A2,“通過第二關”為事件B1,“補過且通過第二關”為事件B2。             (2分)

   (1)不需要補過就可獲得獎品的事件為A=A1?B1,又A1與B1相互獨立,則P(A)=P

(A1?B1)=P(A1)?P(B1)=。故他不需要補過就可獲得獎品的概率為。

(6分)

   (2)由已知得ξ=2,3,4,注意到各事件之間的獨立性與互斥性,可得

       

19.解法:1:(1)

   (2)過E作EF⊥PC,垂足為F,連結DF。             (8分)

由Rt△EFC∽

解法2:(1)

   (2)設平面PCD的法向量為

        則

           解得   

AC的法向量取為

 角A―PC―D的大小為

20.(1)由已知得    

  是以a2為首項,以

    (6分)

   (2)證明:

   

21:解(1)由線方程x+2y+10-6ln2=0知,

    直線斜率為

  

    所以   解得a=4,b=3。    (6分)

   (2)由(1)得

22.解:(1)設直線l的方程為

因為直線l與橢圓交點在y軸右側,

所以  解得2

l直線y截距的取值范圍為。          (4分)

   (2)①(Ⅰ)當AB所在的直線斜率存在且不為零時,

設AB所在直線方程為

解方程組           得

所以

所以

因為l是AB的垂直平分線,所以直線l的方程為

 

因此

 又

   (Ⅱ)當k=0或不存在時,上式仍然成立。

綜上所述,M的軌跡方程為(λ≠0)。  (9分)

②當k存在且k≠0時,由(1)得

  解得

所以

解法:(1)由于

當且僅當4+5k2=5+4k2,即k≠±1時等號成立,

此時,

 

當k不存在時,

綜上所述,                      (14分)

解法(2):

因為

當且僅當4+5k2=5+4k2,即k≠±1時等號成立,

此時。

當k不存在時,

綜上所述,。

 

 

 

 


同步練習冊答案
久久精品免费一区二区视