題目列表(包括答案和解析)
已知中,內角
的對邊的邊長分別為
,且
(I)求角的大。
(II)若求
的最小值.
【解析】第一問,由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
第二問,
三角函數的性質運用。
解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
(Ⅱ)由(Ⅰ)可知
,
,則當
,即
時,y的最小值為
.
正弦定理在解三角形中的作用:
(1)
如果已知三角形的任意兩個______與一_______,由三角形________,可以計算出三角形的另一________,并由正弦定理計算出三角形的另_______.(2)
如果已知三角形的任意________與基中一邊的______,應用正弦定理,可以計算出另一邊的對角的_______,進而確定這個_______和三角形其他的_______.正弦定理在解三角形中的作用:
(1)如果已知三角形的任意兩個______與一_______,由三角形________,可以計算出三角形的另一________,并由正弦定理計算出三角形的另_______.
(2)如果已知三角形的任意________與基中一邊的______,應用正弦定理,可以計算出另一邊的對角的_______,進而確定這個_______和三角形其他的_______.
給出問題:已知△ABC滿足a·cosA=b·cosB,試判斷△ABC的形狀,某學生的解答如下:
故△ABC事直角三角形.
(ii)設△ABC外接圓半徑為R,由正弦定理可得,原式等價于
故△ABC是等腰三角形.
綜上可知,△ABC是等腰直角三角形.
請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結果________.
給出問題:已知ΔABC滿足a·cosA=b·cosB,試判斷ΔABC的形狀,某學生的解答如下:
故ΔABC事直角三角形.
(ii)設ΔABC外接圓半徑為R,由正弦定理可得,原式等價于
故ΔABC是等腰三角形.
綜上可知,ΔABC是等腰直角三角形.
請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結果________.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com