題目列表(包括答案和解析)
在平面直角坐標系中,曲線
與坐標軸的交點都在圓
上.
(1)求圓的方程;
(2)若圓與直線
交于
、
兩點,且
,求
的值.
【解析】本試題主要是考查了直線與圓的位置關系的運用。
(1)曲線與
軸的交點為(0,1),
與軸的交點為(3+2
,0),(3-2
,0) 故可設
的圓心為(3,t),則有32+(t-1)2=(2
)2+t2,解得t=1.
(2)因為圓與直線
交于
、
兩點,且
。聯立方程組得到結論。
求圓心在直線y=-2x上,并且經過點A(2,-1),與直線x+y=1相切的圓的方程.
【解析】利用圓心和半徑表示圓的方程,首先
設圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯立解得x=1,y=-2,即圓心(1,-2)
∴r==
,
故所求圓的方程為:+
=2
解:法一:
設圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯立解得x=1,y=-2,即圓心(1,-2) ……………………8分
∴r==
,
………………………10分
故所求圓的方程為:+
=2
………………………12分
法二:由條件設所求圓的方程為:+
=
, ………………………6分
解得a=1,b=-2, =2
………………………10分
所求圓的方程為:+
=2
………………………12分
其它方法相應給分
在△ABC中,a、b、c分別是角A、B、C的對邊,cosB=.
⑴ 若cosA=-,求cosC的值; ⑵
若AC=
,BC=5,求△ABC的面積.
【解析】第一問中sinB==
, sinA=
=
cosC=cos(180°-A-B)=-cos(A+B) =sinA.sinB-cosA·cosB
=×
-(-
)×
=
第二問中,由=
+
-2AB×BC×cosB得 10=
+25-8AB
解得AB=5或AB=3綜合得△ABC的面積為或
解:⑴ sinB==
, sinA=
=
,………………2分
∴cosC=cos(180°-A-B)=-cos(A+B) ……………………3分
=sinA.sinB-cosA·cosB ……………………4分
=×
-(-
)×
=
……………………6分
⑵ 由=
+
-2AB×BC×cosB得 10=
+25-8AB
………………7分
解得AB=5或AB=3, ……………………9分
若AB=5,則S△ABC=AB×BC×sinB=
×5×5×
=
………………10分
若AB=3,則S△ABC=AB×BC×sinB=
×5×3×
=
……………………11分
綜合得△ABC的面積為或
已知是等差數列,其前n項和為Sn,
是等比數列,且
,
.
(Ⅰ)求數列與
的通項公式;
(Ⅱ)記,
,證明
(
).
【解析】(1)設等差數列的公差為d,等比數列
的公比為q.
由,得
,
,
.
由條件,得方程組,解得
所以,
,
.
(2)證明:(方法一)
由(1)得
①
②
由②-①得
而
故,
(方法二:數學歸納法)
① 當n=1時,,
,故等式成立.
② 假設當n=k時等式成立,即,則當n=k+1時,有:
即,因此n=k+1時等式也成立
由①和②,可知對任意,
成立.
已知,且
.
(1)求的值;
(2)求的值.
【解析】本試題主要考查了二項式定理的運用,以及系數求和的賦值思想的運用。第一問中,因為,所以
,可得
,第二問中,因為
,所以
,所以
,利用組合數性質可知。
解:(1)因為,所以
, ……3分
化簡可得,且
,解得
. …………6分
(2),所以
,
所以,
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com