題目列表(包括答案和解析)
(本小題滿分12分)已知函數
(I)若函數在區間
上存在極值,求實數a的取值范圍;
(II)當時,不等式
恒成立,求實數k的取值范圍.
(Ⅲ)求證:解:(1),其定義域為
,則
令
,
則,
當時,
;當
時,
在(0,1)上單調遞增,在
上單調遞減,
即當時,函數
取得極大值. (3分)
函數
在區間
上存在極值,
,解得
(4分)
(2)不等式,即
令
(6分)
令,則
,
,即
在
上單調遞增, (7分)
,從而
,故
在
上單調遞增, (7分)
(8分)
(3)由(2)知,當時,
恒成立,即
,
令,則
, (9分)
(10分)
以上各式相加得,
即,
即
(12分)
。
(1)求f(x)的單調區間;
(2)討論f(x)的極值.
所以f(-1)=2是極大值,f(1)=-2是極小值.
(2)曲線方程為y=x3-3x,點A(0,16)不在曲線上.
設切點為M(x0,y0),則點M的坐標滿足y0=x03-3x0.
因f′(x0)=3(x02-1),故切線的方程為y-y0=3(x02-1)(x-x0).
注意到點A(0,16)在切線上,有16-(x03-3x0)=3(x02-1)(0-x0),
化簡得x03=-8,解得x0=-2.
所以切點為M(-2,-2),
切線方程為9x-y+16=0.
已知數列是各項均不為0的等差數列,公差為d,
為其前n項和,且滿足
,
.數列
滿足
,
,
為數列
的前n項和.
(1)求數列的通項公式
和數列
的前n項和
;
(2)若對任意的,不等式
恒成立,求實數
的取值范圍;
(3)是否存在正整數,使得
成等比數列?若存在,求出所有
的值;若不存在,請說明理由.
【解析】第一問利用在中,令n=1,n=2,
得 即
解得,,
[
又時,
滿足
,
,
第二問,①當n為偶數時,要使不等式恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當n為奇數時,要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
第三問,
若成等比數列,則
,
即.
由,可得
,即
,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,,
[
又時,
滿足
,
,
.
(2)①當n為偶數時,要使不等式恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當n為奇數時,要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
綜合①、②可得的取值范圍是
.
(3),
若成等比數列,則
,
即.
由,可得
,即
,
.
又,且m>1,所以m=2,此時n=12.
因此,當且僅當m=2,
n=12時,數列中的
成等比數列
x2 | ||
|
x2 | ||
|
x2 | ||
|
1 | ||
|
1 | ||
|
1 | ||
|
1 | ||
|
1 | ||
|
1 | ||
|
sinx |
x |
x2 |
3! |
x4 |
5! |
x6 |
7! |
sinx |
x |
x2 |
3! |
x4 |
5! |
x6 |
7! |
x2 |
π2 |
x2 |
22•π2 |
x2 |
n2π2 |
1 |
22 |
1 |
32 |
1 |
n2 |
π2 |
6 |
π2 |
6 |
Sn+64 |
n |
2 |
S1S3 |
3 |
S2S4 |
n+1 |
SnSn+2 |
5 |
16 |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com