題目列表(包括答案和解析)
已知函數 R).
(Ⅰ)若 ,求曲線
在點
處的的切線方程;
(Ⅱ)若 對任意
恒成立,求實數a的取值范圍.
【解析】本試題主要考查了導數在研究函數中的運用。
第一問中,利用當時,
.
因為切點為(
),
則
,
所以在點()處的曲線的切線方程為:
第二問中,由題意得,即
即可。
Ⅰ)當時,
.
,
因為切點為(),
則
,
所以在點()處的曲線的切線方程為:
. ……5分
(Ⅱ)解法一:由題意得,即
. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因為,所以
恒成立,
故在
上單調遞增,
……12分
要使恒成立,則
,解得
.……15分
解法二:
……7分
(1)當時,
在
上恒成立,
故在
上單調遞增,
即
.
……10分
(2)當時,令
,對稱軸
,
則在
上單調遞增,又
① 當,即
時,
在
上恒成立,
所以在
單調遞增,
即
,不合題意,舍去
②當時,
,
不合題意,舍去 14分
綜上所述:
已知數列的前
項的和為
,
是等比數列,且
,
。
⑴求數列和
的通項公式;
⑵設,求數列
的前
項的和
。
⑴ ,數列
的前
項的和為
,求證:
.
【解析】第一問利用數列
依題意有:當n=1時,;
當時,
第二問中,利用由得:
,然后借助于錯位相減法
第三問中
結合均值不等式放縮得到證明。
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.
【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)證明:易得,
于是
,所以
(2) ,
設平面PCD的法向量
,
則,即
.不防設
,可得
.可取平面PAC的法向量
于是
從而
.
所以二面角A-PC-D的正弦值為.
(3)設點E的坐標為(0,0,h),其中,由此得
.
由,故
所以,,解得
,即
.
解法二:(1)證明:由,可得
,又由
,
,故
.又
,所以
.
(2)如圖,作于點H,連接DH.由
,
,可得
.
因此,從而
為二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,
因此所以二面角
的正弦值為
.
(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設交點為F,連接BE,EF. 故
或其補角為異面直線BE與CD所成的角.由于BF∥CD,故
.在
中,
故
在中,由
,
,
可得.由余弦定理,
,
所以.
甲船由島出發向北偏東
的方向作勻速直線航行,速度為
海里∕小時,在甲船從
島出發的同時,乙船從
島正南
海里處的
島出發,朝北偏東
的方向作勻速直線航行,速度為
海里∕小時。
⑴求出發小時時兩船相距多少海里?
⑴ 兩船出發后多長時間相距最近?最近距離為多少海里?
【解析】第一問中根據時間得到出發小時時兩船相距的海里為
第二問設時間為t,則
利用二次函數求得最值,
解:⑴依題意有:兩船相距
答:出發3小時時兩船相距海里
⑵兩船出發后t小時時相距最近,即
即當t=4時兩船最近,最近距離為海里。
設橢圓的左、右頂點分別為
,點
在橢圓上且異于
兩點,
為坐標原點.
(Ⅰ)若直線與
的斜率之積為
,求橢圓的離心率;
(Ⅱ)若,證明直線
的斜率
滿足
【解析】(1)解:設點P的坐標為.由題意,有
①
由,得
,
由,可得
,代入①并整理得
由于,故
.于是
,所以橢圓的離心率
(2)證明:(方法一)
依題意,直線OP的方程為,設點P的坐標為
.
由條件得消去
并整理得
②
由,
及
,
得.
整理得.而
,于是
,代入②,
整理得
由,故
,因此
.
所以.
(方法二)
依題意,直線OP的方程為,設點P的坐標為
.
由P在橢圓上,有
因為,
,所以
,即
③
由,
,得
整理得
.
于是,代入③,
整理得
解得,
所以.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com