(Ⅱ)證明:∵VC平面VCN.∴AB⊥VC又∵在△VCN和△CDM中.∠CVN=∠MDC.∠VCN=∠VCN ∴∠DMC=∠VNC=90°.∴DM⊥VC 查看更多

 

題目列表(包括答案和解析)

已知VC是△ABC所在平面的一條斜線,點N是V在平面ABC上的射影,且在△ABC的高CD上(如圖).

(1)證明:∠MDC是二面角M-AB-C的平面角;

(2)當∠MDC=∠CVN時,證明:VC⊥平面AMB;

查看答案和解析>>

已知VC是△ABC所在平面的一條斜線,點N是V在平面ABC上的射影,且在△ABC的高CD上(如圖).

(1)證明:∠MDC是二面角M-AB-C的平面角;

(2)當∠MDC=∠CVN時,證明:VC⊥平面AMB;

查看答案和解析>>

甲.如圖1,平面VAD⊥平面ABCD,△VAD是等邊三角形,ABCD是矩形,AB:AD=
2
:1,F是AB的中點.
(1)求VC與平面ABCD所成的角;
(2)求二面角V-FC-B的度數;
(3)當V到平面ABCD的距離是3時,求B到平面VFC的距離.
乙、如圖正方體ABCD-A1B1C1D1中,E、F、G分別是B1B、AB、BC的中點.
(1)證明:D1F⊥EG;
(2)證明:D1F⊥平面AEG;
(3)求cos<
AE
,
D1B

注意:考生在(19甲)、(19乙)兩題中選一題作答,如果兩題都答,只以(19甲)計分.

查看答案和解析>>

19、如圖已知VC是△ABC所在平面的一條斜線,點N是V在平面ABC上的射影,且在△ABC的高CD上.AB=a,VC與AB之間的距離為h,點M∈VC.
(1)證明∠MDC是二面角M-AB-C的平面角;
(2)當∠MDC=∠CVN時,證明VC⊥平面AMB.

查看答案和解析>>

如圖已知VC是△ABC所在平面的一條斜線,點N是V在平面ABC上的射影,且在△ABC的高CD上.AB=a,VC與AB之間的距離為h,點M∈VC.
(1)證明∠MDC是二面角M-AB-C的平面角;
(2)當∠MDC=∠CVN時,證明VC⊥平面AMB.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视