求. 解:原式= 注:在化簡三角函數式過程中.除利用三角變換公式.還需用到代數變形公式.如本題平方差公式. 查看更多

 

題目列表(包括答案和解析)

閱讀下面所給材料:已知數列{an},a1=2,an=3an-1+2,求數列的通項an
解:令an=an-1=x,則有x=3x+2,所以x=-1,故原遞推式an=3an-1+2可轉化為:
an+1=3(an-1+1),因此數列{an+1}是首項為a1+1,公比為3的等比數列.
根據上述材料所給出提示,解答下列問題:
已知數列{an},a1=1,an=3an-1+4,
(1)求數列的通項an;并用解析幾何中的有關思想方法來解釋其原理;
(2)若記Sn=
n
k=1
1
lg(ak+2)lg(ak+1+2)
,求
lim
n→∞
Sn;
(3)若數列{bn}滿足:b1=10,bn+1=100bn3,利用所學過的知識,把問題轉化為可以用閱讀材料的提示,求出解數列{bn}的通項公式bn

查看答案和解析>>

求“方程的解”有如下解題思路:設,則上單調遞減,且,所以原方程有唯一解.類比上述解題思路,方程的解集為      

 

查看答案和解析>>

把函數的圖象按向量平移得到函數的圖象. 

(1)求函數的解析式; (2)若,證明:.

【解析】本試題主要考查了函數 平抑變換和運用函數思想證明不等式。第一問中,利用設上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入 ,便可以得到結論。第二問中,令,然后求導,利用最小值大于零得到。

(1)解:設上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分

(2) 證明:令,……6分

……8分

,∴,∴上單調遞增.……10分

,即

 

查看答案和解析>>

求“方程的解”有如下解題思路:設,則上單調遞減,且,所以原方程有唯一解.類比上述解題思路,方程的解集為      

 

查看答案和解析>>

已知二次函數的二次項系數為,且不等式的解集為 

⑴若方程有兩個相等的實數根,求的解析式;

⑵若函數無極值,求實數的取值范圍

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视