運用等差數列的通項公式. 查看更多

 

題目列表(包括答案和解析)

已知數列中,,點在直線上,其中…。

(1)令,證明數列是等比數列;

(2)設分別為數列、的前項和,證明數列是等差數列。

【解析】本試題主要考查了等差數列和等比數列的通項公式以及數列的求和的綜合運用問題。既考查了概念,又考查了同學們的計算能力。

 

查看答案和解析>>

在遞增等差數列)中,已知,的等比中項.

(1)求數列的通項公式;

(2)設數列的前項和為,求使的最小值.

【解析】本試題主要考查了數列通項公式的求解以及前n項和公式的運用。并求解最值。

 

查看答案和解析>>

有四個數:前三個成等差數列,后三個成等比數列。首末兩數和為16,中間兩數和為12。求這四個數。                                

【解析】本試題主要是考查了等差數列和等比數列的通項公式的運用。

 

查看答案和解析>>

在等差數列{an}中,a1=3,其前n項和為Sn,等比數列{bn}的各項均為正數,b1=1,公比為q,且b2+ S2=12,.(Ⅰ)求an 與bn;(Ⅱ)設數列{cn}滿足,求{cn}的前n項和Tn.

【解析】本試題主要是考查了等比數列的通項公式和求和的運用。第一問中,利用等比數列{bn}的各項均為正數,b1=1,公比為q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通項公式故an=3+3(n-1)=3n, bn=3 n-1.     第二問中,,由第一問中知道,然后利用裂項求和得到Tn.

解: (Ⅰ) 設:{an}的公差為d,

因為解得q=3或q=-4(舍),d=3.

故an=3+3(n-1)=3n, bn=3 n-1.                       ………6分

(Ⅱ)因為……………8分

 

查看答案和解析>>

已知遞增等差數列滿足:,且成等比數列.

(1)求數列的通項公式;

(2)若不等式對任意恒成立,試猜想出實數的最小值,并證明.

【解析】本試題主要考查了數列的通項公式的運用以及數列求和的運用。第一問中,利用設數列公差為

由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當時,;當時,;而,所以猜想,的最小值為然后加以證明即可。

解:(1)設數列公差為,由題意可知,即,

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等價于

時,;當時,;

,所以猜想,的最小值為.     …………8分

下證不等式對任意恒成立.

方法一:數學歸納法.

時,,成立.

假設當時,不等式成立,

時,, …………10分

只要證  ,只要證  ,

只要證  ,只要證  ,

只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

方法二:單調性證明.

要證 

只要證  ,  

設數列的通項公式,        …………10分

,    …………12分

所以對,都有,可知數列為單調遞減數列.

,所以恒成立,

的最小值為

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视