直線的方程是指( ) A.直線上點的坐標都是方程的解 B.以方程的解為坐標的點都在直線上 C.直線上點的坐標都是方程的解.且以方程的解為坐標的點都在直線上 D.以上都不對 查看更多

 

題目列表(包括答案和解析)

、為直角坐標平面內x、y軸正方向上的單位向量,若向量,(x,y∈R,m≥2),且
(1)求動點M(x,y)的軌跡方程?并指出方程所表示的曲線;
(2)已知點A(0,1},設直線l:y=x-3與點M的軌跡交于B、C兩點,問是否存在實數m,使得?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

已知點是直角坐標平面內的動點,點到直線的距離為,到點的距離為,且

(1)求動點P所在曲線C的方程;

(2)直線過點F且與曲線C交于不同兩點A、B(點A或B不在x軸上),分別過A、B點作直線的垂線,對應的垂足分別為,試判斷點F與以線段為直徑的圓的位置關系(指在圓內、圓上、圓外等情況);

(3)記,(A、B、是(2)中的點),問是否存在實數,使成立.若存在,求出的值;若不存在,請說明理由.

進一步思考問題:若上述問題中直線、點、曲線C:,則使等式成立的的值仍保持不變.請給出你的判斷            (填寫“不正確”或“正確”)(限于時間,這里不需要舉反例,或證明).

查看答案和解析>>

精英家教網設b>0,橢圓方程為
x2
2b2
+
y2
b2
=1
,拋物線方程為y=
1
8
x2+b
,如圖所示,過點F(0,b+2)作x軸的平行線,與拋物線在第一象限的交點為G,已知拋物線在點G處的切線經過橢圓的右焦點F1
(1)求點G和點F1的坐標(用b表示);
(2)求滿足條件的橢圓方程和拋物線方程;
(3)設A,B分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點P,使得△ABP為直角三角形?若存在,指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標).

查看答案和解析>>

已知點P是直角坐標平面內的動點,點P到直線l1:x=-2的距離為d1,到點F(-1,0)的距離為d2,且
d2
d1
=
2
2

(1)求動點P所在曲線C的方程;
(2)直線l過點F且與曲線C交于不同兩點A、B(點A或B不在x軸上),分別過A、B點作直線l1:x=-2的垂線,對應的垂足分別為M、N,試判斷點F與以線段MN為直徑的圓的位置關系(指在圓內、圓上、圓外等情況);
(3)記S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的點),問是否存在實數λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,請說明理由.
進一步思考問題:若上述問題中直線l1:x=-
a2
c
、點F(-c,0)、曲線C:
x2
a2
+
y2
b2
=1(a>b>0,c=
a2-b2
)
,則使等式S22=λS1S3成立的λ的值仍保持不變.請給出你的判斷
 
 (填寫“不正確”或“正確”)(限于時間,這里不需要舉反例,或證明).

查看答案和解析>>

精英家教網設b>0,橢圓方程為
x2
2b2
+
y2
b2
=1
,拋物線方程為x2=8(y-b).如圖所示,過點F(0,b+2)作x軸的平行線,與拋物線在第一象限的交點為G,已知拋物線在點G的切線經過橢圓的右焦點F1
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設A,B分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點P,使得△ABP為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標).

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视