題目列表(包括答案和解析)
設橢圓的左、右頂點分別為
,點
在橢圓上且異于
兩點,
為坐標原點.
(Ⅰ)若直線與
的斜率之積為
,求橢圓的離心率;
(Ⅱ)若,證明直線
的斜率
滿足
【解析】(1)解:設點P的坐標為.由題意,有
①
由,得
,
由,可得
,代入①并整理得
由于,故
.于是
,所以橢圓的離心率
(2)證明:(方法一)
依題意,直線OP的方程為,設點P的坐標為
.
由條件得消去
并整理得
②
由,
及
,
得.
整理得.而
,于是
,代入②,
整理得
由,故
,因此
.
所以.
(方法二)
依題意,直線OP的方程為,設點P的坐標為
.
由P在橢圓上,有
因為,
,所以
,即
③
由,
,得
整理得
.
于是,代入③,
整理得
解得,
所以.
(08年杭州市質檢二)(14分)如圖,在橢圓中,點
是左焦點,
,
分別為右頂點和上頂點,點
為橢圓的中心。又點
在橢圓上,且滿足條件:
,點
是點
在x軸上的射影。
(1)求證:當取定值時,點
必為定點;
(2)如果點落在左頂點與左焦點之間,試求橢圓離心率的取值范圍;
(3)如果以為直徑的圓與直線
相切,且凸四邊形
的面積等于
,求橢圓的方程。
已知橢圓的對稱軸為坐標軸,焦點是(0,
),(0,
),又點
在橢圓
上.
(1)求橢圓的方程;
(2)已知直線的斜率為
,若直線
與橢圓
交于
、
兩點,求
面積的最大值.
2.A解析:由知函數在
上有零點,又因為函數在(0,+
)上是減函數,所以函數y=f(x) 在(0,+
)上有且只有一個零點不妨設為
,則
,又因為函數是偶函數,所以
=0并且函數在(0,+
)上是減函數,因此-
是(-
,0)上的唯一零點,所以函數共有兩個零點
下列敘述中,是隨機變量的有( )
①某工廠加工的零件,實際尺寸與規定尺寸之差;②標準狀態下,水沸騰的溫度;③某大橋一天經過的車輛數;④向平面上投擲一點,此點坐標.
A.②③ B.①② C.①③④ 。模佗
(09年東城區期末理)(13分)
已知橢圓的對稱軸為坐標軸,且拋物線
的焦點是橢圓
的一個焦點,又點
在橢圓
上.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線的方向向量為
,若直線
與橢圓
交于
、
兩點,求
面積的最大值.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com