題目列表(包括答案和解析)
關于函數,有下列命題:
(1)由f(x1)=f(x2)=0,可得,x1-x2是的整數倍;
(2)y=f(x)的表達式可改寫為y=4cos(2x-);
(3)y=f(x)的圖象關于點(-,0)對稱;
(4)y=f(x)的圖象關于直線x=-對稱;
其中正確命題的序號是
關于函數,有下列命題:
(1)由f(x1)=f(x2)=0,可得,x1-x2是
的整數倍;
(2)y=f(x)的表達式可改寫為y=4cos(2x-);
(3)y=f(x)的圖象關于點(-,0)對稱;
(4)y=f(x)的圖象關于直線x=-
對稱;
其中正確命題的序號是
如圖所示,圓柱的高為2,底面半徑為,AE、DF是圓柱的兩條母線,過
作圓柱的截面交下底面于
.
(1)求證:;
(2)若四邊形ABCD是正方形,求證;
(3)在(2)的條件下,求二面角A-BC-E的平面角的一個三角函數值。
【解析】第一問中,利用由圓柱的性質知:AD平行平面BCFE
又過作圓柱的截面交下底面于
.
∥
又AE、DF是圓柱的兩條母線
∥DF,且AE=DF
。粒摹危牛
第二問中,由線面垂直得到線線垂直。四邊形ABCD是正方形 又
BC、AE是平面ABE內兩條相交直線
第三問中,設正方形ABCD的邊長為x,則在
在
由(2)可知:為二面角A-BC-E的平面角,所以
證明:(1)由圓柱的性質知:AD平行平面BCFE
又過作圓柱的截面交下底面于
.
∥
又AE、DF是圓柱的兩條母線
∥DF,且AE=DF
。粒摹危牛
(2) 四邊形ABCD是正方形
又
BC、AE是平面ABE內兩條相交直線
(3)設正方形ABCD的邊長為x,則在
在
由(2)可知:為二面角A-BC-E的平面角,所以
(理)(本小題8分)如圖,在四棱錐中,底面
是矩形,
平面
,
,
,以
的中點
為球心、
為直徑的球面交
于點
.
(1) 求證:平面平面
;
(2)求點到平面
的距離.
證明:(1)由題意,在以
為直徑的球面上,則
平面
,則
又,
平面
,
∴,
平面
,
∴平面平面
. (3分)
(2)∵是
的中點,則
點到平面
的距離等于點
到平面
的距離的一半,由(1)知,
平面
于
,則線段
的長就是點
到平面
的距離
∵在中,
∴為
的中點,
(7分)
則點到平面
的距離為
(8分)
(其它方法可參照上述評分標準給分)
(本小題滿分12分)
如圖,斜三棱柱,已知側面
與底面
垂直且
,
,
,若二面角
為
,
(1)證明平面
;
(2)求與平面
所成角的正切值;
(3)在平面內找一點
,使三棱錐
為正三棱錐,并求點
到平面
距離.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com