因為k=-0.6<0,所以y隨x的增大而減小.當x取最小值60時.y取到最大值. 查看更多

 

題目列表(包括答案和解析)

先閱讀下面材料,再回答問題.
一般地,如果函數y的自變量x在a<x<b范圍內,對于任意x1,x2,當a<x1<x2<b時,總是有y1<y2(yn是與xn對應的函數值),那么就說函數y在a<x<b范圍內是增函數.
例如:函數y=x2在正實數范圍內是增函數.
證明:在正實數范圍內任取x1,x2,若x1<x2,
則y1-y2=x12-x22=( x1-x2)( x1+x2
因為x1>0,x2>0,x1<x2
所以x1+x2>0,x1-x2<0,( x1-x2)( x1+x2)<0
即y1-y2<0,亦即y1<y2,也就是當x1<x2時,y1<y2
所以函數y=x2在正實數范圍內是增函數.
問題:
(1)下列函數中.①y=-2x(x為全體實數);②y=-
2
x
(x>0);③y=
1
x
(x>0);在給定自變量x的取值范圍內,是增函數的有

(2)對于函數y=x2-2x+1,當自變量x
>1
>1
時,函數值y隨x的增大而增大.
(3)說明函數y=-x2+4x,當x<2時是增函數.

查看答案和解析>>

先閱讀下面材料,再回答問題.
一般地,如果函數y的自變量x在a<x<b范圍內,對于任意x1,x2,當a<x1<x2<b時,總是有y1<y2(yn是與xn對應的函數值),那么就說函數y在a<x<b范圍內是增函數.
例如:函數y=x2在正實數范圍內是增函數.
證明:在正實數范圍內任取x1,x2,若x1<x2,
則y1-y2=x12-x22=( x1-x2)( x1+x2
因為x1>0,x2>0,x1<x2
所以x1+x2>0,x1-x2<0,( x1-x2)( x1+x2)<0
即y1-y2<0,亦即y1<y2,也就是當x1<x2時,y1<y2
所以函數y=x2在正實數范圍內是增函數.
問題:
(1)下列函數中.①y=-2x(x為全體實數);②y=-
2
x
(x>0);③y=
1
x
(x>0);在給定自變量x的取值范圍內,是增函數的有______.
(2)對于函數y=x2-2x+1,當自變量x______時,函數值y隨x的增大而增大.
(3)說明函數y=-x2+4x,當x<2時是增函數.

查看答案和解析>>

先閱讀下面材料,再回答問題.
一般地,如果函數y的自變量x在a<x<b范圍內,對于任意x1,x2,當a<x1<x2<b時,總是有y1<y2(yn是與xn對應的函數值),那么就說函數y在a<x<b范圍內是增函數.
例如:函數y=x2在正實數范圍內是增函數.
證明:在正實數范圍內任取x1,x2,若x1<x2,
則y1-y2=x12-x22=( x1-x2)( x1+x2
因為x1>0,x2>0,x1<x2
所以x1+x2>0,x1-x2<0,( x1-x2)( x1+x2)<0
即y1-y2<0,亦即y1<y2,也就是當x1<x2時,y1<y2
所以函數y=x2在正實數范圍內是增函數.
問題:
(1)下列函數中.①y=-2x(x為全體實數);②數學公式(x>0);③數學公式(x>0);在給定自變量x的取值范圍內,是增函數的有______.
(2)對于函數y=x2-2x+1,當自變量x______時,函數值y隨x的增大而增大.
(3)說明函數y=-x2+4x,當x<2時是增函數.

查看答案和解析>>

9、針對代數式x2-6x+10的值的說法,其中敘述錯誤的是(  )

查看答案和解析>>

【解題思路】通過讀題、審題

(1)完成表格有2個思路:從供或需的角度考慮,均能完成上表。

(2)運用公式(調運水的重量×調運的距離)

總調運量=A的總調運量+B的總調運量調運水的重量×調運的距離

y=50x+(14-x)30+60(15-x)+(x-1)45=5x+1275(注:一次函數的最值要得到自變量的取值范圍)∵5>0∴y隨x的增大而增大,y要最小則x應最大

解得1≤x≤14

y=5x+1275中∵5>0∴y隨x的增大而增大,y要最小則x應最小=1

∴調運方案為A往甲調1噸,往乙調13噸;B往甲調14噸,不往乙調。

【答案】⑴(從左至右,從上至下)14-x    15-x     x-1   

⑵y=50x+(14-x)30+60(15-x)+(x-1)45=5x+1275

解不等式1≤x≤14

所以x=1時y取得最小值

y=5+1275=1280

∴調運方案為A往甲調1噸,往乙調13噸;B往甲調14噸,不往乙調。

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视