(2)若對于任意的.不等式恒成立.試問這樣的是否存在.若存在.請求出的范圍.若不存在.說明理由, 查看更多

 

題目列表(包括答案和解析)

已知函數,

(Ⅰ)試討論函數f(x)的單調區間;

(Ⅱ)若,不等式f(x)≥kx對于任意的x∈R恒成立,求k的取值范圍.

查看答案和解析>>

已知偶函數f(x)對任意的x1,x2∈R,恒有f(x1+x2)=f(x1)+f(x2)+2x1x2-2,

(1)求f(0),f(1)的值及f(x)的表達式;

(2)設函數g(x)=(x∈R),若函數g(x)在區間[-1,1]上是增函數,求實數a的值組成的集合A;

(3)在(2)的條件下,設關于x的方程g(x)=的兩個非零實根為x1,x2,試問:是否存在實數m,使得不等式m2+tm+1≥|x1-x2|對a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

(本題滿分16分)

對于函數,如果存在實數使得,那么稱的生成函數。

(1)下面給出兩組函數,是否分別為的生成函數?并說明理由。

第一組:;

第二組:。

(2)設,生成函數。若不等式

上有解,求實數的取值范圍。

(3)設,取生成函數圖象的最低點坐標為。

若對于任意正實數
試問是否存在最大的常數,使恒成立?如果存在,求出這個的值;如果不存在,請說明理由。

查看答案和解析>>

 

    (理)如圖,平面ADEF⊥平面ABCD,ABCD與ADEF均為矩形,且AB:AD:AF=

 
2:2:;P為線段EF上一點,M為AB的中點,若PC與BD所成的角為

60°.

   (1)試確定P點位置;

   (2)求二面角P—MC—D的大小的余弦值;

   (3)當AB長為多少時,點D到平面PMC的距離等于

 

 

 

 

(文)設函數),其中

(Ⅰ)當時,求曲線在點處的切線方程;

(Ⅱ)當時,求函數的極大值和極小值;

(Ⅲ)當時,證明存在,使得不等式對任意的恒成立.

 

 

 

 

 

 

 

查看答案和解析>>

定義域為R的函數f(x)滿足:對于任意的實數x,y都有f(x+y)=f(x)+f(y)成立,且當x>0時f(x)<0恒成立.
(1)判斷函數f(x)的奇偶性,并證明你的結論;
(2)證明f(x)為減函數;若函數f(x)在[-3,3]上總有f(x)≤6成立,試確定f(1)應滿足的條件;(3)解關于x的不等式
1
n
f(ax2)-f(x)>
1
n
f(a2x)-f(a)
,(n是一個給定的自然數,a<0)

查看答案和解析>>

一、選擇題:

1. C    2. D     3. A   4 . C   5. C     6. B   7. C  8. B    9. D  10. B

二、填空題

11. -13      12.         13.  100π    14.    15. 0

三、解答題

16. (1) f(x)=(+)2+sin 2x=3cos2x+sin2x+sin2x=2cos(2x-)+2     

      函數f(x)的最小值是0,f(x)的最大值是

  (2) -1<t<

17.(1)一次摸獎從個球中任取兩個,有種方法。它們是等可能的,其中兩個球的顏色不同的方法有種,一次摸獎中獎的概率                                   ……6分

    (2)設每次摸獎中獎的概率為,三次摸獎中(每次摸獎后放回)恰有一次中獎的概率是,

         因而上為增函數,

上為減函數,                                   ……9分

(用重要不等式確定p值的參照給分)

∴當取得最大值,即,解得(舍去),則當時,三次摸獎(每次摸獎后放回)恰有一次中獎的概率最大. ……12分

18.【方法一】證明:在線段BC1上取中點F,連結EF、DF

則由題意得EF∥DA1,且EF=DA1

∴四邊形EFDA1是平行四邊形

∴A1E∥FD,又A1E平面BDC1,FD平面BDC1

∴A1E∥平面BDC1                              …6分

(2)由A1E⊥B1C1,A1E⊥CC1,得A1E⊥平面CBB1C1,過點E作

EH⊥BC1于H,連結A1H,則∠A1HE為二面角A1-BC1-B1的平面角        …8分

在Rt△BB1C1中,由BB1=8,B1C1=4,得BC1邊上的高為,∴EH=,

又A1E=2,∴tan∠A1HE==

∴二面角A1-BC1-B1為arctan                     …12分

【方法二】建立如圖所示的空間直角坐標系,題意知B(-2,0,0),

D(2,40),A1(2,8,0), C1(0,8,2),B1(-2,8,0), E(-1,8,),

=(-4,-4,0), =(-2,4,2),=(-3,0, ),

=(-4,-8, 0), =(-2,0, 2),=(0,8,0),

=(2,8, 2).                                                   

(1)證明:∵=2(+)∴A1E∥平面BDC1                                       …6分

(2)設=(x,y,1)為平面A1BC1的一個法向量,則,且,即解得=(,,1),同理,設=(x,y,1)為平面B1BC1的一個法向量,則,且,即解得=(-,0,1),∴cos<,>==-

∴二面角A1-BC1-B1為arccos.                                      …12分

 

19. (1)由題意,知a=2c,=4,解得a=2,c=1,∴b=,故橢圓方程為 …5分

(2)設P(2cosθ, sinθ),M(4,m),N(4,n),則A(-2,0),B(2,0),

由A、P、M三點共線,得m=…7分

由B、P、N三點共線,得n=,           …9分

設Q(t,0),則由

 (t-4)(t-4)+(0-)(0-)=0,

整理得:(t-4)2-9=0      解得t=1或t=7

∴Q點的坐標是(7,0)或(1,0).                   …12分

20.20.解:(1)

6ec8aac122bd4f6e

(2)

 6ec8aac122bd4f6e

  6ec8aac122bd4f6e

21.解: (1)∵,

由題設可知:sinθ≥1    ∴sinθ=1.      …4分

從而a= ,∴f(x)= x3+x2-2x+c,而又由f(1)= 得c=.

∴f(x)= x3+x2-2x+即為所求.                                …6分

(2)由=(x+2)(x-1),易知f(x)在(-∞,-2)及(1,+∞)上均為增函數,在(-2,1)上為減函數.           …8分

①當m>1時,f(x)在[m,m+3]上遞增,故f(x)max=f(m+3), f(x)min=f(m)

由f(m+3)-f(m)= (m+3)3+(m+3)2-2(m+3)-m3-m2+2m=3m2+12m+≤,

得-5≤m≤1.這與條件矛盾,故                    …10分

② 當0≤m≤1時,f(x)在[m,1]上遞增, 在[1,m+3]上遞增

∴f(x)min=f(1), f(x)max=max{ f(m),f(m+3) },

又f(m+3)-f(m)= 3m2+12m+=3(m+2)2->0(0≤m≤1)

∴f(x)max= f(m+3)∴|f(x1)-f(x2)|≤f(x)max-f(x)min= f(m+3)-f(1)≤f(4)-f(1)= 恒成立.    …12分

故當0≤m≤1時,原不等式恒成立.綜上,存在m且m∈[0,1]合題意.                      …13分

 

 


同步練習冊答案
久久精品免费一区二区视