又由于.則.故是等差數列. 查看更多

 

題目列表(包括答案和解析)

定義:在數列{an}中,若an2-an-12=p,(n≥2,n∈N*,p為常數),則稱{an}為“等方差數列”.下列是對“等方差數列”的有關判斷:
①若{an}是“等方差數列”,則數列{
1an
}
是等差數列;
②{(-2)n}是“等方差數列”;
③若{an}是“等方差數列”,則數列{akn}(k∈N*,k為常數)也是“等方差數列”;
④若{an}既是“等方差數列”,又是等差數列,則該數列是常數數列.
其中正確的命題為
③④
③④
.(寫出所有正確命題的序號)

查看答案和解析>>

已知各項均不為零的數列{an},定義向量
cn
=(an,an+1)
,
bn
=(n,n+1)
,n∈N*.下列命題中真命題是( 。
A、若?n∈N*總有
cn
bn
成立,則數列{an}是等差數列
B、若?n∈N*總有
cn
bn
成立,則數列{an}是等比數列
C、若?n∈N*總有
cn
bn
成立,則數列{an}是等差數列
D、若?n∈N*總有
cn
bn
成立,則數列{an}是等比數列

查看答案和解析>>

(2009•湖北模擬)給出定義:在數列{an}中,都有
a
2
n
-
a
2
n-1
=p(n≥2,n∈N*)
( p為常數),則稱{an}為“等方差數列”.下列是對“等方差數列”的判斷:
(1)數列{an}是等方差數列,則數列{
a
2
n
}
是等差數列;
(2)數列{(-1)n}是等方差數列;
(3)若數列{an}既是等方差數列,又是等差數列,則該數列必為常數數列;
(4)若數列{an}是等方差數列,則數列{akn}(k∈N*,k為常數)也是等方差數列.
其中正確命題序號為
(1)(2)(3)(4)
(1)(2)(3)(4)

查看答案和解析>>

已知各項均不為零的數列{an},定義向量
c
=(an,an+1),
b
=(n,n+1),n∈N+.下列命題中為真命題的是( 。

查看答案和解析>>

若數列{an},(n∈N+)是等比數列,設bn=
na1a2an
(n∈N+)
,則數列{bn} (n∈N+)為等比數列,類比上述性質,相應地:若數列{cn} 是等差數列,且cn>0(n∈N*),則當dn=
a1+a2+…+an
n
a1+a2+…+an
n
(n∈N*),則數列{dn}是等差數列.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视