題目列表(包括答案和解析)
。
,輪船位于港口O北偏西
且與該港口相距20海里的A處,并以30海里/小時的航行速度沿正東方向勻速行駛。假設該小船沿直線方向以
海里/小時的航行速度勻速行駛,經過t小時與輪船相遇。
(1)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應為多少?
(2)假設小艇的最高航行速度只能達到30海里/小時,試設計航行方案(即確定航行方向與航行速度的大小),使得小艇能以最短時間與輪船相遇,并說明理由。
已知函數。
(1)求函數的最小正周期和最大值;
(2)求函數的增區間;
(3)函數的圖象可以由函數的圖象經過怎樣的變換得到?
【解析】本試題考查了三角函數的圖像與性質的運用。第一問中,利用可知函數的周期為
,最大值為
。
第二問中,函數的單調區間與函數
的單調區間相同。故當
,解得x的范圍即為所求的區間。
第三問中,利用圖像將的圖象先向右平移
個單位長度,再把橫坐標縮短為原來的
(縱坐標不變),然后把縱坐標伸長為原來的
倍(橫坐標不變),再向上平移1個單位即可。
解:(1)函數的最小正周期為
,最大值為
。
(2)函數的單調區間與函數
的單調區間相同。
即
所求的增區間為
,
即
所求的減區間為
,
。
(3)將的圖象先向右平移
個單位長度,再把橫坐標縮短為原來的
(縱坐標不變),然后把縱坐標伸長為原來的
倍(橫坐標不變),再向上平移1個單位即可。
已知函數在
取得極值
(1)求的單調區間(用
表示);
(2)設,
,若存在
,使得
成立,求
的取值范圍.
【解析】第一問利用
根據題意在
取得極值,
對參數a分情況討論,可知
當即
時遞增區間:
遞減區間:
,
當即
時遞增區間:
遞減區間:
,
第二問中, 由(1)知:
在
,
,
在
從而求解。
解:
…..3分
在
取得極值,
……………………..4分
(1) 當即
時 遞增區間:
遞減區間:
,
當即
時遞增區間:
遞減區間:
,
………….6分
(2) 由(1)知:
在
,
,
在
……………….10分
, 使
成立
得:
設,
且為常數。若存在一公差大于
的等差數列
,使得
為一公比大于
的等比數列,請寫出滿足條件的一組
的值 .(答案不唯一,一組即可)
在海岸A處測得北偏東
方向,距A為
km的B處有一魚群,魚群正以10 km / h的速度從B處向北偏東
方向游動.在A處北偏西
方向,離A為2 km的C處有一艘漁船獲悉立即以
km/ h的速度追捕魚群,問漁船沿什么方向行駛才能最快追上魚群?并求出所需時間。
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com