題目列表(包括答案和解析)
(本小題滿分12分)(注意:在試題卷上作答無效)
函數,其圖象在
處的切線方程為
.
(Ⅰ)求函數的解析式;
(Ⅱ)若函數的圖象與
的圖象有三個不同的交點,求實數
的取值范圍;
(Ⅲ)是否存在點P,使得過點P的直線若能與曲線圍成兩個封閉圖形,則這兩個封閉圖形的面積相等?若存在,求出P點的坐標;若不存在,說明理由.
(本小題滿分12分)(注意:在試題卷上作答無效)
函數,其圖象在
處的切線方程為
.
(Ⅰ)求函數的解析式;
(Ⅱ)若函數的圖象與
的圖象有三個不同的交點,求實數
的取值范圍;
(Ⅲ)是否存在點P,使得過點P的直線若能與曲線圍成兩個封閉圖形,則這兩個封閉圖形的面積相等?若存在,求出P點的坐標;若不存在,說明理由.
已知m>1,直線,橢圓C:
,
、
分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點時,求直線的方程;
(Ⅱ)設直線與橢圓C交于A、B兩點,△A、△B
的重心分別為G、H.若原點O在以線段GH為直徑的圓內,求實數m的取值范圍.[
【解析】第一問中因為直線經過點
(
,0),所以
=
,得
.又因為m>1,所以
,故直線的方程為
第二問中設,由
,消去x,得
,
則由,知
<8,且有
由題意知O為的中點.由
可知
從而
,設M是GH的中點,則M(
).
由題意可知,2|MO|<|GH|,得到范圍
設橢圓的左、右頂點分別為
,點
在橢圓上且異于
兩點,
為坐標原點.
(Ⅰ)若直線與
的斜率之積為
,求橢圓的離心率;
(Ⅱ)若,證明直線
的斜率
滿足
【解析】(1)解:設點P的坐標為.由題意,有
①
由,得
,
由,可得
,代入①并整理得
由于,故
.于是
,所以橢圓的離心率
(2)證明:(方法一)
依題意,直線OP的方程為,設點P的坐標為
.
由條件得消去
并整理得
②
由,
及
,
得.
整理得.而
,于是
,代入②,
整理得
由,故
,因此
.
所以.
(方法二)
依題意,直線OP的方程為,設點P的坐標為
.
由P在橢圓上,有
因為,
,所以
,即
③
由,
,得
整理得
.
于是,代入③,
整理得
解得,
所以.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com