題目列表(包括答案和解析)
我們用部分自然數構造如下的數表:用aij(i≥j)表示第i行第j個數(i、j為正整數),使ail=aii=i ;每行中的其余各數分別等于其“肩膀”上的兩個數之和(第一、二行除外,如圖),設第n(n為正整數)行中各數之和為bn.
(1)試寫出b2一2b1;,b3-2b2,b4-2b3,b5-2b4,并推測bn+1和bn的關系(無需證明);
(2)證明數列{bn+2}是等比數列,并求數列{bn}的通項公式bn;
(3)數列{ bn}中是否存在不同的三項bp,bq,br(p,q,r為正整數)恰好成等差數列?若存在求出P,q,r的關系;若不存在,請說明理由.
![]() |
(09年萊陽一中期末文)(12分)
我們用部分自然數構造如下的數表:用表示第
行第
個數為整數
,使
;每行中的其余各數分別等于其‘肩膀”上的兩個數之和(第一、二行除外,如圖),設第
(
為正整數)行中各數之和為
。
(1) 試寫出并推測
和
的關系(無需證明);
(2) 證明數列是等比數列,并求數列
的通項公式
;
(3) 數列中是否存在不同的三項
恰好成等差數列?若存在求出
的關系;若不存在,請說明理由。
(08年靜安區質檢文)我們用部分自然數構造如下的數表:用表示第
行第
個數(
為正整數),使
;每行中的其余各數分別等于其“肩膀”上的兩個數之和(第一、二行除外,如圖),設第
(
為正整數)行中各數之和為
.
(1)試寫出,并推測
和
的關系(無需證明);
(2)證明數列是等比數列,并求數列
的通項公式
;
(3)數列中是否存在不同的三項
(
為正整數)恰好成等差數列?若存在,求出
的關系;若不存在,請說明理由.
如圖,已知直線(
)與拋物線
:
和圓
:
都相切,
是
的焦點.
(Ⅰ)求與
的值;
(Ⅱ)設是
上的一動點,以
為切點作拋物線
的切線
,直線
交
軸于點
,以
、
為鄰邊作平行四邊形
,證明:點
在一條定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為
, 直線
與
軸交點為
,連接
交拋物線
于
、
兩點,求△
的面積
的取值范圍.
【解析】第一問中利用圓:
的圓心為
,半徑
.由題設圓心到直線
的距離
.
即,解得
(
舍去)
設與拋物線的相切點為
,又
,得
,
.
代入直線方程得:,∴
所以
,
第二問中,由(Ⅰ)知拋物線方程為
,焦點
. ………………(2分)
設,由(Ⅰ)知以
為切點的切線
的方程為
.
令,得切線
交
軸的
點坐標為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴ 因為
是定點,所以點
在定直線
第三問中,設直線,代入
得
結合韋達定理得到。
解:(Ⅰ)由已知,圓:
的圓心為
,半徑
.由題設圓心到直線
的距離
.
即,解得
(
舍去). …………………(2分)
設與拋物線的相切點為
,又
,得
,
.
代入直線方程得:,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知拋物線方程為
,焦點
. ………………(2分)
設,由(Ⅰ)知以
為切點的切線
的方程為
.
令,得切線
交
軸的
點坐標為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴ 因為
是定點,所以點
在定直線
上.…(2分)
(Ⅲ)設直線,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面積
范圍是
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com