故點的所有“相關弦 的中點的橫坐標都是. 查看更多

 

題目列表(包括答案和解析)

有一個二次函數的圖象,三位學生分別說出了它的一些特點:

甲:對稱軸是直線

乙:與軸兩個交點的橫坐標都是整數;

丙:與軸交點的縱坐標也是整數,且以這三個交點為頂點的三角形面積為

請你寫出滿足上述全部特點的一個二次函數解析式          

查看答案和解析>>

(2009•崇明縣二模)設橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個頂點坐標為A(0,-
2
),且其右焦點到直線y-x-2
2
=0
的距離為3.
(1)求橢圓C的軌跡方程;
(2)若A、B是橢圓C上的不同兩點,弦AB(不平行于y軸)的垂直平分線與x軸相交于點M,則稱弦AB是點M的一條“相關弦”,如果點M的坐標為M(
1
2
,0
),求證:點M的所有“相關弦”的中點在同一條直線上;
(3)對于問題(2),如果點M坐標為M(t,0),當t滿足什么條件時,點M(t,0)存在無窮多條“相關弦”,并判斷點M的所有“相關弦”的中點是否在同一條直線上.

查看答案和解析>>

(2009•崇明縣二模)設橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個頂點坐標為A(0,-
2
),且其右焦點到直線y-x-2
2
=0
的距離為3.
(1)求橢圓C的軌跡方程;
(2)若A、B是橢圓C上的不同兩點,弦AB(不平行于y軸)的垂直平分線與x軸相交于點M,則稱弦AB是點M的一條“相關弦”,如果點M的坐標為M(
1
2
,0
),求證點M的所有“相關弦”的中點在同一條直線上;
(3)根據解決問題(2)的經驗與體會,請運用類比、推廣等思想方法,提出一個與“相關弦”有關的具有研究價值的結論,并加以解決.(本小題將根據所提出問題的層次性給予不同的分值)

查看答案和解析>>

若A、B是拋物線y2=4x上的不同兩點,弦AB(不平行于y軸)的垂直平分線與x軸相交于點P,則稱弦AB是點P的一條“相關弦”;
(I)求點P(4,0)的“相關弦”的中點的橫坐標;
(II)求點P(4,0)的所有“相關弦”的弦長的最大值.

查看答案和解析>>

若A、B是拋物線y2=4x上的不同兩點,弦AB(不平行于y軸)的垂直平分線與x軸相交于點P,則稱弦AB是點P的一條“相關弦”.已知當x>2時,點P(x,0)存在無窮多條“相關弦”.給定x0>2.
(I)證明:點P(x0,0)的所有“相關弦”中的中點的橫坐標相同;
(II)試問:點P(x0,0)的“相關弦”的弦長中是否存在最大值?若存在,求其最大值(用x0表示):若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视