(Ⅱ)因為.所以其最大值為6.最小值為2-----10分D. 查看更多

 

題目列表(包括答案和解析)

(2012•鹽城一模)在綜合實踐活動中,因制作一個工藝品的需要,某小組設計了如圖所示的一個門(該圖為軸對稱圖形),其中矩形ABCD的三邊AB、BC、CD由長6分米的材料彎折而成,BC邊的長為2t分米(1≤t≤
3
2
);曲線AOD擬從以下兩種曲線中選擇一種:曲線C1是一段余弦曲線(在如圖所示的平面直角坐標系中,其解析式為y=cosx-1),此時記門的最高點O到BC邊的距離為h1(t);曲線C2是一段拋物線,其焦點到準線的距離為
9
8
,此時記門的最高點O到BC邊的距離為h2(t).
(1)試分別求出函數h1(t)、h2(t)的表達式;
(2)要使得點O到BC邊的距離最大,應選用哪一種曲線?此時,最大值是多少?

查看答案和解析>>

某市的老城區改造建筑用地平面示意圖如圖所示.經規劃調研確定,老城區改造規劃建筑用地區域可近似為半徑是R的圓面.該圓的內接四邊形ABCD是原老城區建筑用地,測量可知邊界ABAD=4萬米,BC=6萬米,CD=2萬米.

(I)請計算原老城區建筑用地ABCD的面積及圓面的半徑R的值;

(II)因地理條件的限制,邊界AD、CD不能變更,而邊界AB、BC可以調整.為了提高老城區改造建筑用地的利用率,請在上設計一點P,使得老城區改造的新建筑用地APCD的面積最大,并求出其最大值.

 

 

 

查看答案和解析>>

某市的老城區改造建筑用地平面示意圖如圖所示.經規劃調研確定,老城區改造規劃建筑用地區域可近似為半徑是R的圓面.該圓的內接四邊形ABCD是原老城區建筑用地,測量可知邊界ABAD=4萬米,BC=6萬米,CD=2萬米.

(I)請計算原老城區建筑用地ABCD的面積及圓面的半徑R的值;

(II)因地理條件的限制,邊界AD、CD不能變更,而邊界AB、BC可以調整.為了提高老城區改造建筑用地的利用率,請在上設計一點P,使得老城區改造的新建筑用地APCD的面積最大,并求出其最大值.

查看答案和解析>>

已知函數,(),

(1)若曲線與曲線在它們的交點(1,c)處具有公共切線,求a,b的值

(2)當時,若函數的單調區間,并求其在區間(-∞,-1)上的最大值。

【解析】(1) 

∵曲線與曲線在它們的交點(1,c)處具有公共切線

(2)令,當時,

,得

時,的情況如下:

x

+

0

-

0

+

 

 

所以函數的單調遞增區間為,單調遞減區間為

,即時,函數在區間上單調遞增,在區間上的最大值為,

,即時,函數在區間內單調遞增,在區間上單調遞減,在區間上的最大值為

,即a>6時,函數在區間內單調遞贈,在區間內單調遞減,在區間上單調遞增。又因為

所以在區間上的最大值為

 

查看答案和解析>>

已知數列是各項均不為0的等差數列,公差為d,為其前n項和,且滿足,.數列滿足,,為數列的前n項和.

(1)求數列的通項公式和數列的前n項和

(2)若對任意的,不等式恒成立,求實數的取值范圍;

(3)是否存在正整數,使得成等比數列?若存在,求出所有的值;若不存在,請說明理由.

【解析】第一問利用在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

,

第二問,①當n為偶數時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當n為奇數時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

第三問,

     若成等比數列,則,

即.

,可得,即,

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

,

(2)①當n為偶數時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當n為奇數時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

綜合①、②可得的取值范圍是

(3),

     若成等比數列,則,

即.

,可得,即,

,且m>1,所以m=2,此時n=12.

因此,當且僅當m=2, n=12時,數列中的成等比數列

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视