(Ⅱ)∵均為正實數.∴.當時等號成立, 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)閱讀理解:
①對于任意正實數a,b,∵(
a
-
b
)2≥0, ∴a-2
ab
+b≥0
,∴a+b≥2
ab

只有當a=b時,等號成立.
②結論:在a+b≥2
ab
(a,b均為正實數)中,若ab為定值p,則a+b≥2
p

只有當a=b時,a+b有最小值2
p

(Ⅱ)結論運用:根據上述內容,回答下列問題:(提示:在答題卡上作答)
①若m>0,只有當m=
 
時,m+
1
m
有最小值
 

②若m>1,只有當m=
 
時,2m+
8
m-1
有最小值
 

(Ⅲ)探索應用:
學校要建一個面積為392m2的長方形游泳池,并且在四周要修建出寬為2m和4m的小路(如圖).問游泳池的長和寬分別為多少米時,共占地面積最?并求出占地面積的最小值.
精英家教網

查看答案和解析>>

(1)閱讀理解:①對于任意正實數,只有當時,等號成立.
②結論:在均為正實數)中,若為定值, 則,只有當時,有最小值
(2)結論運用:根據上述內容,回答下列問題:(提示:在答題卡上作答)
①若,只有當__________時,有最小值__________.
②若,只有當__________時,有最小值__________.
(3)探索應用:學校要建一個面積為392的長方形游泳池,并且在四周要修建出寬為2m和4 m的小路(如圖所示)。問游泳池的長和寬分別為多少米時,共占地面積最。坎⑶蟪稣嫉孛娣e的最小值。

查看答案和解析>>

(1)閱讀理解:①對于任意正實數只有當時,等號成立.
②結論:在均為正實數)中,若為定值, 則,只有當時,有最小值
(2)結論運用:根據上述內容,回答下列問題:(提示:在答題卡上作答)
①若,只有當__________時,有最小值__________.
②若,只有當__________時,有最小值__________.
(3)探索應用:學校要建一個面積為392的長方形游泳池,并且在四周要修建出寬為2m和4 m的小路(如圖所示)。問游泳池的長和寬分別為多少米時,共占地面積最?并求出占地面積的最小值。

查看答案和解析>>

已知數列是各項均不為0的等差數列,公差為d,為其前n項和,且滿足,.數列滿足,為數列的前n項和.

(1)求數列的通項公式和數列的前n項和;

(2)若對任意的,不等式恒成立,求實數的取值范圍;

(3)是否存在正整數,使得成等比數列?若存在,求出所有的值;若不存在,請說明理由.

【解析】第一問利用在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

第二問,①當n為偶數時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當n為奇數時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

第三問,

     若成等比數列,則,

即.

,可得,即,

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

(2)①當n為偶數時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當n為奇數時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

綜合①、②可得的取值范圍是

(3),

     若成等比數列,則,

即.

,可得,即,

,且m>1,所以m=2,此時n=12.

因此,當且僅當m=2, n=12時,數列中的成等比數列

 

查看答案和解析>>


同步練習冊答案
久久精品免费一区二区视